M.Sc DEGREE EXAMINATION, APRIL 2019 I Year II Semester Algebra II

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. When is an element said to algebraic over F?
- 2. Define Algebraic extension.
- 3. Define root of multiplicity m.
- 4. Define simple extension.
- 5. Define group of automorphisms.
- 6. Define Normal extension.
- 7. Define the invariant subspace of a linear transformation.
- 8. If S and T are nilpotent linear transformations which commute, prove that S + T is nilpotent.
- 9. Define companion matrix of f(x).
- 10. Define rational canonical form.
- 11. When is a field K said to be an extension of field F?
- 12. Define the index of nilpotence of a linear transformation.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. If L is an algebraic extension of K and if K is an algebraic extension of F, then prove that L is an algebraic extension of F.
- 14. If $p(x) \in F[x]$ and if K is an extension of F,then for any element $b \in K$, Prove that p(x) = (x-b) q(x) + p(b), where $q(x) \in K[x]$ and where deg q(x) = deg p(x) 1.
- 15. Prove that the fixed field of G is a sub-field of K.
- 16. If V is a n-dimensional vector space over F and if $T \in A(V)$ has all its characteristic roots in F. Then T satisfies a polynomial of degree n over F.
- 17. Prove that two nilpotent linear transformations are similar if and only if they have same invariants.

- 18. Suppose that $V = V_1 \oplus V_2$ where V_1 and V_2 are subspaces of V invariant under T. Let T_1 and T_2 be the linear transformations induced by T on V_1 and V_2 respectively. If the minimal polynomial of T_1 over F is $P_1(x)$ while that of T_2 is $P_2(x)$, then prove that the polynomial for T over F is the least common multiple of $P_1(x)$ and $P_2(x)$.
- 19. Let $\dim M = m$, if M is cyclic with respect to T then prove that $\dim M T^k = m k$, for all $k \le m$.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Prove that the number e is transcendental.
- 21. If F is of characteristic 0 and if a,b are algebraic over F. Prove that there exists an element $c \in F(a,b)$ such that F(a,b) = F(c).
- 22. Show that if K is a extension of F then G(K,F) is a finite group and $O[G(K,F)] \leq [K;F]$.
- 23. Prove that there exists a subspace W of V, invariant under T such that $V = V_1 \oplus W$.
- 24. Let V and W be two vector spaces over F and suppose that ψ is a vector space isomorphism of V onto W. Suppose that S ∈ A_F(V) and T ∈ A_F(W) are such that for v∈ V, (vS)ψ = (vψ)T. Prove that S and T have the same elementary divisors.

M.Sc DEGREE EXAMINATION, APRIL 2019 I Year II Semester Algebra II

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. When is an element said to algebraic over F?
- 2. Define Algebraic extension.
- 3. Define root of multiplicity m.
- 4. Define simple extension.
- 5. Define group of automorphisms.
- 6. Define Normal extension.
- 7. Define the invariant subspace of a linear transformation.
- 8. If S and T are nilpotent linear transformations which commute, prove that S + T is nilpotent.
- 9. Define companion matrix of f(x).
- 10. Define rational canonical form.
- 11. When is a field K said to be an extension of field F?
- 12. Define the index of nilpotence of a linear transformation.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. If L is an algebraic extension of K and if K is an algebraic extension of F, then prove that L is an algebraic extension of F.
- 14. If $p(x) \in F[x]$ and if K is an extension of F,then for any element $b \in K$, Prove that p(x) = (x-b) q(x) + p(b), where $q(x) \in K[x]$ and where deg q(x) = deg p(x) 1.
- 15. Prove that the fixed field of G is a sub-field of K.
- 16. If V is a n-dimensional vector space over F and if $T \in A(V)$ has all its characteristic roots in F. Then T satisfies a polynomial of degree n over F.
- 17. Prove that two nilpotent linear transformations are similar if and only if they have same invariants.

- 18. Suppose that $V = V_1 \oplus V_2$ where V_1 and V_2 are subspaces of V invariant under T. Let T_1 and T_2 be the linear transformations induced by T on V_1 and V_2 respectively. If the minimal polynomial of T_1 over F is $P_1(x)$ while that of T_2 is $P_2(x)$, then prove that the polynomial for T over F is the least common multiple of $P_1(x)$ and $P_2(x)$.
- 19. Let $\dim M = m$, if M is cyclic with respect to T then prove that $\dim M T^k = m k$, for all $k \le m$.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Prove that the number e is transcendental.
- 21. If F is of characteristic 0 and if a,b are algebraic over F. Prove that there exists an element $c \in F(a,b)$ such that F(a,b) = F(c).
- 22. Show that if K is a extension of F then G(K,F) is a finite group and $O[G(K,F)] \leq [K;F]$.
- 23. Prove that there exists a subspace W of V, invariant under T such that $V = V_1 \oplus W$.
- 24. Let V and W be two vector spaces over F and suppose that ψ is a vector space isomorphism of V onto W. Suppose that S ∈ A_F(V) and T ∈ A_F(W) are such that for v∈ V, (vS)ψ = (vψ)T. Prove that S and T have the same elementary divisors.