M.Sc DEGREE EXAMINATION, APRIL 2019 II Year III Semester Differential Equations

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define Analytic functions
- 2. Define regular singular point.
- 3. Define fundamental matrix.
- 4. Represent the system of equations in vector form $x'_1 = 5x_1 2x_2$; $x'_2 = 2x_1 + x_2$
- 5. State Cauchy-Peano theorem.
- 6. State Lipschitz condition.
- 7. Eliminate the arbitrary constants a and b from the equation $2z = (ax + y)^2 + b$
- 8. Eliminate the arbitrary function f from the relation $z = xy + f(x^2 + y^2)$
- 9. Solve $(D^2 5DD' + 6{D'}^2)z = 0$
- 10. Classify $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$
- 11. Find the particular Integral of $\left(D^2 5DD' + 6{D'}^2\right)z = e^{x+y}$
- 12. Find the power series solution of the differential equation x' + x = t, x(0) = 0

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

13. If $P_m(t)$ and $P_n(t)$ are Legendre polynomials then prove that $\int_{-1}^{1} P_m(t)P_n(t) = 0$ if $m \neq n$

- 14. Determine the fundamental matrix for x' = Ax where $A = \begin{pmatrix} 3 & -2 \\ -2 & 3 \end{pmatrix}$
- 15. By the method of successive approximations solve the initial value problem $x' = -x, \ x(0) = 1, t \ge 0$
- 16. Find the general solution of the partial differential equation px (x + y) = qy (x + y) - (x - y) (2x + 2y + z)

17PAMCT3A08

- 17. Solve $(D^2 + 3DD' + 2{D'}^2)z = x + y$
- 18. Show that the equation $\frac{\partial^2 y}{\partial t^2} + 2k \frac{\partial y}{\partial t} = c^2 \frac{\partial^2 y}{\partial x^2}$ possesses solutions of the form $\sum_{r=0}^{\infty} C_r e^{-kt} \cos(a_r x + \epsilon_r) \cos(w_r t + \delta_r) \text{ where } C_r, \alpha_r, \epsilon_r, \delta_r \text{ are constants and}$ $w_r^2 = \alpha_r^2 c^2 - k^2$
- 19. State and prove Gronwall inequality

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

20. Let A_1, A_2, \ldots be the positive zeros of the Bessel function $J_p(t)$ then prove that

$$\int_{0}^{1} t J_{p}(A_{m}t) J_{p}(A_{n}t) dt = \begin{cases} 0 \ if \ m \neq n \\ \frac{1}{2} J_{P+1}(A_{n})^{2} \ if \ m = n \end{cases}$$

- 21. State and prove Existence and Uniqueness theorem in systems of linear differential equations.
- 22. State and prove Picard's theorem.
- 23. Use Charpit's method to solve the partial differential equation $(p^2 + q^2) y = qz$
- 24. Reduce the partial differential equation $y^2 \frac{\partial^2 z}{\partial x^2} 2xy \frac{\partial^2 z}{\partial x \partial y} + x^2 \frac{\partial^2 z}{\partial y^2} = \frac{y^2}{x} \frac{\partial z}{\partial x} + \frac{x^2}{y} \frac{\partial z}{\partial y}$ to canonical form and hence solve it.

M.Sc DEGREE EXAMINATION, APRIL 2019 II Year III Semester Differential Equations

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define Analytic functions
- 2. Define regular singular point.
- 3. Define fundamental matrix.
- 4. Represent the system of equations in vector form $x'_1 = 5x_1 2x_2$; $x'_2 = 2x_1 + x_2$
- 5. State Cauchy-Peano theorem.
- 6. State Lipschitz condition.
- 7. Eliminate the arbitrary constants a and b from the equation $2z = (ax + y)^2 + b$
- 8. Eliminate the arbitrary function f from the relation $z = xy + f(x^2 + y^2)$
- 9. Solve $(D^2 5DD' + 6{D'}^2)z = 0$
- 10. Classify $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$
- 11. Find the particular Integral of $\left(D^2 5DD' + 6{D'}^2\right)z = e^{x+y}$
- 12. Find the power series solution of the differential equation x' + x = t, x(0) = 0

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

13. If $P_m(t)$ and $P_n(t)$ are Legendre polynomials then prove that $\int_{-1}^{1} P_m(t)P_n(t) = 0$ if $m \neq n$

- 14. Determine the fundamental matrix for x' = Ax where $A = \begin{pmatrix} 3 & -2 \\ -2 & 3 \end{pmatrix}$
- 15. By the method of successive approximations solve the initial value problem $x' = -x, \ x(0) = 1, t \ge 0$
- 16. Find the general solution of the partial differential equation px (x + y) = qy (x + y) - (x - y) (2x + 2y + z)

17PAMCT3A08

- 17. Solve $(D^2 + 3DD' + 2{D'}^2)z = x + y$
- 18. Show that the equation $\frac{\partial^2 y}{\partial t^2} + 2k \frac{\partial y}{\partial t} = c^2 \frac{\partial^2 y}{\partial x^2}$ possesses solutions of the form $\sum_{r=0}^{\infty} C_r e^{-kt} \cos(a_r x + \epsilon_r) \cos(w_r t + \delta_r) \text{ where } C_r, \alpha_r, \epsilon_r, \delta_r \text{ are constants and}$ $w_r^2 = \alpha_r^2 c^2 - k^2$
- 19. State and prove Gronwall inequality

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

20. Let A_1, A_2, \ldots be the positive zeros of the Bessel function $J_p(t)$ then prove that

$$\int_{0}^{1} t J_{p}(A_{m}t) J_{p}(A_{n}t) dt = \begin{cases} 0 \ if \ m \neq n \\ \frac{1}{2} J_{P+1}(A_{n})^{2} \ if \ m = n \end{cases}$$

- 21. State and prove Existence and Uniqueness theorem in systems of linear differential equations.
- 22. State and prove Picard's theorem.
- 23. Use Charpit's method to solve the partial differential equation $(p^2 + q^2) y = qz$
- 24. Reduce the partial differential equation $y^2 \frac{\partial^2 z}{\partial x^2} 2xy \frac{\partial^2 z}{\partial x \partial y} + x^2 \frac{\partial^2 z}{\partial y^2} = \frac{y^2}{x} \frac{\partial z}{\partial x} + \frac{x^2}{y} \frac{\partial z}{\partial y}$ to canonical form and hence solve it.