M.Sc. DEGREE EXAMINATION, APRIL 2019 I Year I Semester REAL ANALYSIS

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define Riemann-Stieltjes integral of a bounded real function f over [a , b].
- 2. Define a unit step function I.
- 3. What do you understand by uniform convergence of a sequence of functions $\{f_n\}$?.
- 4. Let $\{f_n\}$ be a sequence of functions defined on a set E.When do you say that a sequence $\{f_n\}$ is i) pointwise bounded and ii) uniformly bounded on E ?.
- 5. Define linear transformation of a mapping A of a vector space X into a vector space Y .
- 6. Define a contraction map.
- 7. State intermediate value theorem.
- 8. Define Borel sets and give an example.
- 9. Define Lebesgue integral of a non negative measurable function f.
- 10. If f is integrable over E ,A and B are disjoint measurable sets contained in E, prove that $\int_{A\cup B} f = \int_A f + \int_B f$.
- 11. State the theorem on integration by parts for real valued functions.
- 12. Define a measurable set E.

Section B
$$(5 \times 5 = 25)$$
 Marks

Answer any **FIVE** questions

13. Prove that
$$\int_{-a}^{b} f d\alpha \leq \int_{a}^{-b} f d\alpha$$
.

- 14. State and prove weierstrass theorem on uniform convergence of series.
- 15. If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, then show that $||A|| < \infty$ and A is uniformly continuous mapping of \mathbb{R}^n into \mathbb{R}^m .
- 16. If \mathbb{C} be a collection of open sets of real ,prove that there is a countable subcollection $\{O_i\}$ of \mathbb{C} such that $\bigcup_{O \in \mathbb{C}} O = \bigcup_{i=1}^{\infty} O_i$.

PAM/CT/1002

- 17. If $\langle f_n \rangle$ is a sequence of measurable functions that converges in measure to f,show that there is a subsequence $\langle f_{n_k} \rangle$ that converges to f almost everywhere.
- 18. If f is continuous on [a, b] ,then prove that $f \in \Re(\alpha)$ on [a, b].
- 19. If E_1 and E_2 are measurable then show that $E_1 \cup E_2$ is measurable.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Prove that $f \in \Re(\alpha)$ on [a, b] if and only if for every $\in > 0$ there exists a partition P of [a,b] such that $U(P, f, \alpha) L(P, f, \alpha) < \in$.
- 21. If $\{f_n\}$ is a pointwise bounded sequence of complex functions on a countable set E, then show that $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ such that $\{f_{n_k}(x)\}$ converges for every $x \in E$.
- 22. State and prove the inverse function theorem.
- 23. State and prove Heine- Borel theorem.
- 24. Let f be defined and bounded on a measurable set E with mE finite. Then show that in order that $\inf_{f \le \psi} \int_E \psi(x) dx = \sup_{f \ge \phi} \int_E \phi(x) dx$ for all simple functions ϕ and ψ , it is necessary and sufficient that f is measurable.

M.Sc. DEGREE EXAMINATION, APRIL 2019 I Year I Semester REAL ANALYSIS

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define Riemann-Stieltjes integral of a bounded real function f over [a , b].
- 2. Define a unit step function I.
- 3. What do you understand by uniform convergence of a sequence of functions $\{f_n\}$?.
- 4. Let $\{f_n\}$ be a sequence of functions defined on a set E.When do you say that a sequence $\{f_n\}$ is i) pointwise bounded and ii) uniformly bounded on E ?.
- 5. Define linear transformation of a mapping A of a vector space X into a vector space Y .
- 6. Define a contraction map.
- 7. State intermediate value theorem.
- 8. Define Borel sets and give an example.
- 9. Define Lebesgue integral of a non negative measurable function f.
- 10. If f is integrable over E ,A and B are disjoint measurable sets contained in E, prove that $\int_{A\cup B} f = \int_A f + \int_B f$.
- 11. State the theorem on integration by parts for real valued functions.
- 12. Define a measurable set E.

Section B
$$(5 \times 5 = 25)$$
 Marks

Answer any **FIVE** questions

13. Prove that
$$\int_{-a}^{b} f d\alpha \leq \int_{a}^{-b} f d\alpha$$
.

- 14. State and prove weierstrass theorem on uniform convergence of series.
- 15. If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, then show that $||A|| < \infty$ and A is uniformly continuous mapping of \mathbb{R}^n into \mathbb{R}^m .
- 16. If \mathbb{C} be a collection of open sets of real ,prove that there is a countable subcollection $\{O_i\}$ of \mathbb{C} such that $\bigcup_{O \in \mathbb{C}} O = \bigcup_{i=1}^{\infty} O_i$.

PAM/CT/1002

- 17. If $\langle f_n \rangle$ is a sequence of measurable functions that converges in measure to f,show that there is a subsequence $\langle f_{n_k} \rangle$ that converges to f almost everywhere.
- 18. If f is continuous on [a, b] ,then prove that $f \in \Re(\alpha)$ on [a, b].
- 19. If E_1 and E_2 are measurable then show that $E_1 \cup E_2$ is measurable.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Prove that $f \in \Re(\alpha)$ on [a, b] if and only if for every $\in > 0$ there exists a partition P of [a,b] such that $U(P, f, \alpha) L(P, f, \alpha) < \in$.
- 21. If $\{f_n\}$ is a pointwise bounded sequence of complex functions on a countable set E, then show that $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ such that $\{f_{n_k}(x)\}$ converges for every $x \in E$.
- 22. State and prove the inverse function theorem.
- 23. State and prove Heine- Borel theorem.
- 24. Let f be defined and bounded on a measurable set E with mE finite. Then show that in order that $\inf_{f \le \psi} \int_E \psi(x) dx = \sup_{f \ge \phi} \int_E \phi(x) dx$ for all simple functions ϕ and ψ , it is necessary and sufficient that f is measurable.