M.Sc DEGREE EXAMINATION, APRIL 2019 I Year II Semester Complex Analysis

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define entire function
- 2. What do you mean by simply connected set ?
- 3. Define essential singularity with an example
- 4. State Maximum modulus theorem
- 5. State Weierstrass factorisation theorem for entire functions
- 6. Define Gamma function
- 7. State Mean value theorem on harmonic functions
- 8. Explain Dirichiet region
- 9. Explain finite rank of an entire function
- 10. Define genus of an entire function
- 11. Define Convex function.
- 12. State Gauss's formula

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

13. Let G be an open set which is a -star shaped. If γ_0 is the curve which is constantly equal to a then prove that every closed rectifiable curve in G is homotopic to γ_0

14. Show that
$$\int_0^{\pi} \frac{d\theta}{a + \cos\theta} = \frac{\pi}{\sqrt{a^2 - 1}}$$
 for $a > 1$.

15. If $|z| \leq 1$ and $p \geq 0$ then prove that $|1 - E_p(Z)| \leq |Z|^{p+1}$

- 16. Let G and Ω be the regions such that there is a one to one analytic function f of G onto Ω : let $a \in G$ and $\alpha = f(a)$. If g_{α} and γ_{α} are the green's functions of G and Ω with singularities a and α respectively then prove that $g_{\alpha}(z) = \gamma_{\alpha}[f(z)]$
- 17. Let f be an analytic function on the disc B(a: r) such that

|f'(z)-f'(a)|<|f'(a)| for all z in B(a: r) , $z\neq a$ a then prove that f is one to one .

PAM/CT/2004

- 18. If G is simply connected and $f:G\to G$ is analytical in G then prove that f has a primitive in G .
- 19. If $G = \{z : ReZ > 0\}$ and $f_n(z) = \int_{\frac{1}{n}}^n e^{-t} t^{z-1} dt$ for $n \ge 1$ and z in G then prove that each f_n is analytic on G and the sequence is convergent in H(G).

Section C $(3 \times 10 = 30)$ Marks

Answer any THREE questions

- 20. State and prove GOURSAT' s theorem
- 21. State and prove SCHWARZ 's lemma for analytic functions
- 22. Let G be a region which is not a whole plane and such that every non vanishing analytic function on G has an analytic square root . If $a \in G$ G then prove that there is an analytic function f on G such that

(i)
$$f(a) = 0$$
 and $f'(a) > 0$

- (ii) f is one to one
- (iii) f(G) = D = z : |Z| < 1
- 23. State and prove Harnack's theroem
- 24. State and prove Schottky's theorem

M.Sc DEGREE EXAMINATION, APRIL 2019 I Year II Semester Complex Analysis

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define entire function
- 2. What do you mean by simply connected set ?
- 3. Define essential singularity with an example
- 4. State Maximum modulus theorem
- 5. State Weierstrass factorisation theorem for entire functions
- 6. Define Gamma function
- 7. State Mean value theorem on harmonic functions
- 8. Explain Dirichiet region
- 9. Explain finite rank of an entire function
- 10. Define genus of an entire function
- 11. Define Convex function.
- 12. State Gauss's formula

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

13. Let G be an open set which is a -star shaped. If γ_0 is the curve which is constantly equal to a then prove that every closed rectifiable curve in G is homotopic to γ_0

14. Show that
$$\int_0^{\pi} \frac{d\theta}{a + \cos\theta} = \frac{\pi}{\sqrt{a^2 - 1}}$$
 for $a > 1$.

15. If $|z| \leq 1$ and $p \geq 0$ then prove that $|1 - E_p(Z)| \leq |Z|^{p+1}$

- 16. Let G and Ω be the regions such that there is a one to one analytic function f of G onto Ω : let $a \in G$ and $\alpha = f(a)$. If g_{α} and γ_{α} are the green's functions of G and Ω with singularities a and α respectively then prove that $g_{\alpha}(z) = \gamma_{\alpha}[f(z)]$
- 17. Let f be an analytic function on the disc B(a: r) such that

|f'(z)-f'(a)|<|f'(a)| for all z in B(a: r) , $z\neq a$ a then prove that f is one to one .

PAM/CT/2004

- 18. If G is simply connected and $f:G\to G$ is analytical in G then prove that f has a primitive in G .
- 19. If $G = \{z : ReZ > 0\}$ and $f_n(z) = \int_{\frac{1}{n}}^n e^{-t} t^{z-1} dt$ for $n \ge 1$ and z in G then prove that each f_n is analytic on G and the sequence is convergent in H(G).

Section C $(3 \times 10 = 30)$ Marks

Answer any THREE questions

- 20. State and prove GOURSAT' s theorem
- 21. State and prove SCHWARZ 's lemma for analytic functions
- 22. Let G be a region which is not a whole plane and such that every non vanishing analytic function on G has an analytic square root . If $a \in G$ G then prove that there is an analytic function f on G such that

(i)
$$f(a) = 0$$
 and $f'(a) > 0$

- (ii) f is one to one
- (iii) f(G) = D = z : |Z| < 1
- 23. State and prove Harnack's theroem
- 24. State and prove Schottky's theorem