M.Sc DEGREE EXAMINATION, APRIL 2019 I Year II Semester Differential Equations

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define analytic functions.
- 2. State the Legendre equation of order p.
- 3. Write down a general non-linear differential equation of order one.
- 4. Define fundamental matrix.
- 5. When is the function f(t,x) defined in a region $D \subset R^2$ said to satisfy Lipschitz condition in the variable x with a Lipschitz constant K?.
- 6. State Picard's theorem.
- 7. Write the general form of linear first order partial differential equation.
- When do we say that the two first order partial differential equations f(x,y,z,p,q)=0 and g(x,y,z,p,q)=0 are compatible?.
- 9. When do you say that the operator F(D,D') is reducible?.
- 10. Define a quasi-linear PDE of second order.
- 11. Eliminate the arbitrary constants a and b from the equation $2z=(ax+y)^2+b$.
- 12. Define self adjoint operator.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

13. Show that $\frac{d}{dt} \left[t^p J_p \left(t \right) \right] = t^p J_{p-1} \left(t \right).$

14. Find the fundamental matrix for the system x' = Ax, where A = $\begin{pmatrix} \alpha_1 & 0 & 0 \\ 0 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \end{pmatrix}$, where α_1, α_2 and α_3 are scalars.

15. Assume that f(t) and g(t) are non-negative continuous functions for $t \ge t_0$. Let k > 0 be a constant. Prove that the inequality $f(t) \le k + \int_{t_0}^t g(s) f(s) ds$, $t \ge t_0$ implies the inequality $f(t) \le k \exp(\int_{t_0}^t g(s) ds)$, $t \ge t_0$.

PAM/CT/2005

- 16. Find the general solution of the linear partial differential equation $z(xp-yq) = y^2 x^2.$
- 17. If u = f(x+iy) + g(x-iy) where f and g are arbitrary functions, then prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} = 0.$
- 18. Show that the equations xp-yq=x, $x^2p+q=xz$ are compatible.
- 19. Construct an operator adjoint to the Laplace operator given by

 $\mathsf{L}(\mathsf{u})=\mathsf{u}_{xx}+\mathsf{u}_{yy}.$

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. If P_n is a Legendre polynomial, then prove that $\int_{-1}^{1} P_n^2(t) dt = \frac{2}{2n+1}$.
- 21. Let A(t) be an n x n matrix which is continuous on I. Suppose a matrix Φ satisfies X['] = A(t)X, t \in I then prove that det Φ satisfies the first order equation (det Φ)['] = (tr A) (det Φ).
- 22. Solve the IVP x $' = x^2$, x(0) = 1 by the method of successive approximations.
- 23. Use Charpit's method to solve $p = (z+qy)^2$.
- 24. Reduce the equation $(n-1)^2 \frac{\partial^2 z}{\partial x^2} y^{2n} \frac{\partial^2 z}{\partial y^2} = ny^{2n-1} \frac{\partial z}{\partial y}$ to canonical form and find its general solution.

M.Sc DEGREE EXAMINATION, APRIL 2019 I Year II Semester Differential Equations

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define analytic functions.
- 2. State the Legendre equation of order p.
- 3. Write down a general non-linear differential equation of order one.
- 4. Define fundamental matrix.
- 5. When is the function f(t,x) defined in a region $D \subset R^2$ said to satisfy Lipschitz condition in the variable x with a Lipschitz constant K?.
- 6. State Picard's theorem.
- 7. Write the general form of linear first order partial differential equation.
- When do we say that the two first order partial differential equations f(x,y,z,p,q)=0 and g(x,y,z,p,q)=0 are compatible?.
- 9. When do you say that the operator F(D,D') is reducible?.
- 10. Define a quasi-linear PDE of second order.
- 11. Eliminate the arbitrary constants a and b from the equation $2z=(ax+y)^2+b$.
- 12. Define self adjoint operator.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

13. Show that $\frac{d}{dt} \left[t^p J_p \left(t \right) \right] = t^p J_{p-1} \left(t \right).$

14. Find the fundamental matrix for the system x' = Ax, where A = $\begin{pmatrix} \alpha_1 & 0 & 0 \\ 0 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \end{pmatrix}$, where α_1, α_2 and α_3 are scalars.

15. Assume that f(t) and g(t) are non-negative continuous functions for $t \ge t_0$. Let k > 0 be a constant. Prove that the inequality $f(t) \le k + \int_{t_0}^t g(s) f(s) ds$, $t \ge t_0$ implies the inequality $f(t) \le k \exp(\int_{t_0}^t g(s) ds)$, $t \ge t_0$.

PAM/CT/2005

- 16. Find the general solution of the linear partial differential equation $z(xp-yq) = y^2 x^2.$
- 17. If u = f(x+iy) + g(x-iy) where f and g are arbitrary functions, then prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} = 0.$
- 18. Show that the equations xp-yq=x, $x^2p+q=xz$ are compatible.
- 19. Construct an operator adjoint to the Laplace operator given by

 $\mathsf{L}(\mathsf{u})=\mathsf{u}_{xx}+\mathsf{u}_{yy}.$

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. If P_n is a Legendre polynomial, then prove that $\int_{-1}^{1} P_n^2(t) dt = \frac{2}{2n+1}$.
- 21. Let A(t) be an n x n matrix which is continuous on I. Suppose a matrix Φ satisfies X['] = A(t)X, t \in I then prove that det Φ satisfies the first order equation (det Φ)['] = (tr A) (det Φ).
- 22. Solve the IVP x $' = x^2$, x(0) = 1 by the method of successive approximations.
- 23. Use Charpit's method to solve $p = (z+qy)^2$.
- 24. Reduce the equation $(n-1)^2 \frac{\partial^2 z}{\partial x^2} y^{2n} \frac{\partial^2 z}{\partial y^2} = ny^{2n-1} \frac{\partial z}{\partial y}$ to canonical form and find its general solution.