M.Sc DEGREE EXAMINATION, APRIL 2019 I Year I Semester Real Analysis

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define Lebesgue measurable set.
- 2. Show that there exist uncountable sets of zero measure
- 3. Show that if f is a non negative measurable function then f=0 almost everywhere iff $\int f dx=0$
- 4. Show that if f is an integrable function then $\left|\int f dx\right| \leq \int |f| dx$. When does equality occur?
- 5. Define point wise bounded sequence of functions
- 6. Test the convergence of $f_n(x) = \frac{\sin nx}{\sqrt{n}}$ for x is real, n = 1, 2...
- 7. Define Contraction of a metric space X.
- 8. Suppose E is a open set in \mathbb{R}^n and f maps E into \mathbb{R}^n . For $x \in E$ with $A = A_1$ and $A = A_2$ then prove that $A_1 = A_2$.

9. Prove that
$$lim_{x\to 0} \frac{log(1+x)}{x} = 1$$

- 10. State STIRLING's formula.
- 11. Define orthonormal system of functions.
- 12. Define the integral of a simple measurable function ϕ . Also Give an example.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Prove that the class M is a σ algebra.
- 14. Let f be a bounded function defined on the finite interval [a,b] then prove that f is Riemann integrable over [a,b] iff it is continuous
- 15. Suppose $\{f_n\}$ is a sequence of functions differentiable on [a,b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a,b]. If f_n converges uniformly on [a,b] then prove that f'_n is uniformly continuous on [a,b] to a function f.

- 16. Suppose f maps a open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m then prove that $f \in \zeta'(E)$ iff the partial derivatives $D_i f_i$ exist and are continuous on E for $1 \le i \le m, 1 \le j \le n$
- 17. If f is a positive function on (0, ∞) such that i) f(x+1) = xf(x); ii.) f(1) = 1; iii.) log f is convex then prove that $f(x) = \Gamma x$
- 18. Let $\{E_i\}$ be a sequence of measurable sets. Then
 - i. If $E_1 \subseteq E_2 \subseteq ...$, then prove $m(\lim E_i) = \lim m(E_i)$.
- ii. If $E_1 \supseteq E_2 \supseteq \dots$ and $m(E_i) < \infty$ for each i, then prove that $m(\lim E_i) = \lim m(E_i)$.
- 19. If f is continuous with period 2π and prove that there is a trigonometric polynomial P such that $|P(x) f(x)| < \epsilon$ for all real x.

Section C
$$(3 \times 10 = 30)$$
 Marks

Answer any **THREE** questions

- 20. Prove that the outer measure of an interval equals its length.
- 21. State and prove FATOU's lemma on non negative measurable functions.
- 22. If f is a continuous complex function on [a,b] prove that there exist a sequence of polynomials P_n such that $lim_{n\to\infty}P_n(x) = f(x)$ uniformly on [a,b]. If f(x) is real then prove that P_n may be taken real.
- 23. If X is a complex metric space and if φ is a contraction of X into X then prove that there exist one and only one $x \in X$ such that $\varphi(x) = x$.
- 24. State and prove PARSEVAL's theorem on Riemann integrable functions.

M.Sc DEGREE EXAMINATION, APRIL 2019 I Year I Semester Real Analysis

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define Lebesgue measurable set.
- 2. Show that there exist uncountable sets of zero measure
- 3. Show that if f is a non negative measurable function then f=0 almost everywhere iff $\int f dx=0$
- 4. Show that if f is an integrable function then $\left|\int f dx\right| \leq \int |f| dx$. When does equality occur?
- 5. Define point wise bounded sequence of functions
- 6. Test the convergence of $f_n(x) = \frac{\sin nx}{\sqrt{n}}$ for x is real, n = 1, 2...
- 7. Define Contraction of a metric space X.
- 8. Suppose E is a open set in \mathbb{R}^n and f maps E into \mathbb{R}^n . For $x \in E$ with $A = A_1$ and $A = A_2$ then prove that $A_1 = A_2$.

9. Prove that
$$lim_{x\to 0} \frac{log(1+x)}{x} = 1$$

- 10. State STIRLING's formula.
- 11. Define orthonormal system of functions.
- 12. Define the integral of a simple measurable function ϕ . Also Give an example.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Prove that the class M is a σ algebra.
- 14. Let f be a bounded function defined on the finite interval [a,b] then prove that f is Riemann integrable over [a,b] iff it is continuous
- 15. Suppose $\{f_n\}$ is a sequence of functions differentiable on [a,b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a,b]. If f_n converges uniformly on [a,b] then prove that f'_n is uniformly continuous on [a,b] to a function f.

- 16. Suppose f maps a open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m then prove that $f \in \zeta'(E)$ iff the partial derivatives $D_i f_i$ exist and are continuous on E for $1 \le i \le m, 1 \le j \le n$
- 17. If f is a positive function on (0, ∞) such that i) f(x+1) = xf(x); ii.) f(1) = 1; iii.) log f is convex then prove that $f(x) = \Gamma x$
- 18. Let $\{E_i\}$ be a sequence of measurable sets. Then
 - i. If $E_1 \subseteq E_2 \subseteq ...$, then prove $m(\lim E_i) = \lim m(E_i)$.
- ii. If $E_1 \supseteq E_2 \supseteq \dots$ and $m(E_i) < \infty$ for each i, then prove that $m(\lim E_i) = \lim m(E_i)$.
- 19. If f is continuous with period 2π and prove that there is a trigonometric polynomial P such that $|P(x) f(x)| < \epsilon$ for all real x.

Section C
$$(3 \times 10 = 30)$$
 Marks

Answer any **THREE** questions

- 20. Prove that the outer measure of an interval equals its length.
- 21. State and prove FATOU's lemma on non negative measurable functions.
- 22. If f is a continuous complex function on [a,b] prove that there exist a sequence of polynomials P_n such that $lim_{n\to\infty}P_n(x) = f(x)$ uniformly on [a,b]. If f(x) is real then prove that P_n may be taken real.
- 23. If X is a complex metric space and if φ is a contraction of X into X then prove that there exist one and only one $x \in X$ such that $\varphi(x) = x$.
- 24. State and prove PARSEVAL's theorem on Riemann integrable functions.