M.Sc DEGREE EXAMINATION, APRIL 2019 I Year I Semester Probability and Distributions

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define hypergeometric random variable.
- 2. Define uniform distribution.
- 3. Define joint probability mass function of (X,Y).
- 4. When will you say that the random variables X and Y are identically distributed?.
- 5. Define bivariate normal distribution.
- 6. What is the joint probability mass function of X_1 and X_2 , if $X_1=Y_1+Y_{12}$ and $X_2=Y_2+y_{12}\cdot?.$
- 7. Define F-distribution for the two independent $\chi^2~{\rm RV}~{\rm X}$ and Y with m and n d.f. respectively.
- 8. State the t-distribution with n d.f. for the two independent variable X and Y.
- 9. Let $\{X_n\}$ be a sequence of RVs defined on some probability space (Ω, S, P) . When will you say that the sequence $\{X_n\}$ converges in probability to the RV X?
- 10. State Lindberg-Levy Central Limit theorem.
- 11. Define Gamma distribution.
- 12. Define distribution function of the RV (X,Y).

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the M.G.F. of gamma distribution.
- 14. An Urn contains three red and two green balls. A random sample of two balls is drawn (a) with replacement (b) without replacement .

Given that X = 0 if the first ball drawn is green, =1 if the first ball drawn is red, and Y = 0 if the second ball drawn is green , =1 if the second ball drawn is red. Find the joint PMF of (X,Y).

15. Find the joint moment generating function and covariance between X_1 and X_2 for Bivariate poisson distribution.

17PAMCE1001

- 16. Prove that the distribution of $\sqrt{n} (\overline{X} \mu)/S$ is t(n-1).
- 17. Let $\{X_n\}$ be a sequence of RVs such that $Xn \xrightarrow{2} X$. Prove that $E X_n \to E X$ and $E X_n^2 \to E X^2$ as $n \to \infty$.
- 18. Let X \sim N (3,4). Find P[2 <X \leq 5).
- 19. Let X₁, X₂ be independent RVs with common density given by $f(x) = \begin{cases} 1 & if \ 0 < x < 1 \\ 0 & otherwise. \end{cases}$

and if $Y_1 = X_1 + X_2$ and $Y_2 = X_1 - X_2$ then find the Jacobian of transformation.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

20. If X be distributed with PDF f(x) =
$$\begin{cases} \frac{1}{12}x^2(1-x), & 0 < x < 1\\ 0, & otherwise \end{cases}$$
and X ~ B(3,2), find (i) E X (ii) E Xⁿ (iii) var(X) (iv) M(t).

- 21. Let (X,Y) be jointly distributed with density function $f(x,y) = \begin{cases} x + y, & 0 < x < 1, & 0 < y < 1 \\ 0, & otherwise \end{cases}$ then find E(X^l Y^m) and cov(X,Y).
- 22. Compute the M.G.F. $M(t_1, t_2)$ of a bivariate normal RV(X,Y).
- 23. Find the mean and variance of $\chi^2(n)$.
- 24. Let $X_n \xrightarrow{P} X$ and g be a continuous function defined on R. Prove that g $(X_n) \xrightarrow{P} g(X)$ as $n \rightarrow \infty$.

M.Sc DEGREE EXAMINATION, APRIL 2019 I Year I Semester Probability and Distributions

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define hypergeometric random variable.
- 2. Define uniform distribution.
- 3. Define joint probability mass function of (X,Y).
- 4. When will you say that the random variables X and Y are identically distributed?.
- 5. Define bivariate normal distribution.
- 6. What is the joint probability mass function of X_1 and X_2 , if $X_1=Y_1+Y_{12}$ and $X_2=Y_2+y_{12}\cdot?.$
- 7. Define F-distribution for the two independent $\chi^2~{\rm RV}~{\rm X}$ and Y with m and n d.f. respectively.
- 8. State the t-distribution with n d.f. for the two independent variable X and Y.
- 9. Let $\{X_n\}$ be a sequence of RVs defined on some probability space (Ω, S, P) . When will you say that the sequence $\{X_n\}$ converges in probability to the RV X?
- 10. State Lindberg-Levy Central Limit theorem.
- 11. Define Gamma distribution.
- 12. Define distribution function of the RV (X,Y).

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the M.G.F. of gamma distribution.
- 14. An Urn contains three red and two green balls. A random sample of two balls is drawn (a) with replacement (b) without replacement .

Given that X = 0 if the first ball drawn is green, =1 if the first ball drawn is red, and Y = 0 if the second ball drawn is green , =1 if the second ball drawn is red. Find the joint PMF of (X,Y).

15. Find the joint moment generating function and covariance between X_1 and X_2 for Bivariate poisson distribution.

17PAMCE1001

- 16. Prove that the distribution of $\sqrt{n} (\overline{X} \mu)/S$ is t(n-1).
- 17. Let $\{X_n\}$ be a sequence of RVs such that $Xn \xrightarrow{2} X$. Prove that $E X_n \to E X$ and $E X_n^2 \to E X^2$ as $n \to \infty$.
- 18. Let X \sim N (3,4). Find P[2 <X \leq 5).
- 19. Let X₁, X₂ be independent RVs with common density given by $f(x) = \begin{cases} 1 & if \ 0 < x < 1 \\ 0 & otherwise. \end{cases}$

and if $Y_1 = X_1 + X_2$ and $Y_2 = X_1 - X_2$ then find the Jacobian of transformation.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

20. If X be distributed with PDF f(x) =
$$\begin{cases} \frac{1}{12}x^2(1-x), & 0 < x < 1\\ 0, & otherwise \end{cases}$$
and X ~ B(3,2), find (i) E X (ii) E Xⁿ (iii) var(X) (iv) M(t).

- 21. Let (X,Y) be jointly distributed with density function $f(x,y) = \begin{cases} x + y, & 0 < x < 1, & 0 < y < 1 \\ 0, & otherwise \end{cases}$ then find E(X^l Y^m) and cov(X,Y).
- 22. Compute the M.G.F. $M(t_1, t_2)$ of a bivariate normal RV(X,Y).
- 23. Find the mean and variance of $\chi^2(n)$.
- 24. Let $X_n \xrightarrow{P} X$ and g be a continuous function defined on R. Prove that g $(X_n) \xrightarrow{P} g(X)$ as $n \rightarrow \infty$.