DEGREE EXAMINATION, APRIL 2019 I Year I Semester Differential Calculus

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Find the n^{th} differential coefficient of $\log(ax + b)$
- 2. Find the n^{th} derivative of e^{ax} .
- 3. If x = u(1+v) and y = v(1+u) find $\frac{\partial(x,y)}{\partial(u,v)}$.
- 4. State the necessary conditions for the existence of maxima or minima at a point.
- 5. Write the Cartesian formula for the radius of curvature
- 6. Find the radius of curvature for the curves $y = e^x$ at the point where it crosses the *y*-axes.
- 7. Find the co-ordinates of the centre of curvature of the curve xy = 2 at the point (2,1)
- 8. Find the radius of curvature of the curve $r^2 = a^2 \sin 2\theta$.
- 9. Define Asymptotes.
- 10. Show that the asymptotes of $x^2y^2 = c^2(x^2 + y^2)$ are the sides of a square.
- 11. Find the (p r) equation of the cardioid $r = a(1 \cos \theta)$
- 12. What is the radius of curvature of the curve $x^4 + y^4 = 2$ at the point (1, 1)?

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the n^{th} derivative of $\sin 2x \, \sin 4x \, \sin 6x$
- 14. Find the maximum or minimum values of $2(x^2 y^2) x^4 + y^4$
- 15. Show that the radius of curvature at any point of the catenary $y = c \cosh \frac{x}{c}$ is equal to the length of the portion of the normal intercepted between the curve and the axis of x.
- 16. From the polar equation of the parabola, show that $\rho^2 = ar$.
- 17. Find the asymptotes of $(x + y)^2 (x + 2y + 2) = x + 9y 2$.
- 18. If $y_1 = e^{a \sin^{-1} x}$ prove that $(1 x^2) y_{n+2} (2n+1) x y_{n+1} (n^2 + a^2) y_n = 0.$

16UMACT1A02 UMA/CT/1A02

19. Show that the evolute of the cycloid $x = a(\theta - \sin \theta); y = a(1 - \cos \theta)$ is another cycloid.

Section C $(3 \times 10 = 30)$ Marks

Answer any THREE questions

- 20. If $y = \sin(m \sin^{-1}x)$ prove that $(1 x^2) y_2 xy_1 + m^2 y = 0$ and $(1 x^2) y_{n+2} (2n+1) xy_{n+1} + (m^2 n^2) y_n = 0$.
- 21. If $u = a^3x^2 + b^3y^2 + c^3z^2$ where $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$, find the minimum value of u.
- 22. Find the radius of curvature at $x = y = \frac{3a}{2}$ to the curve $x^3 + y^3 = 3axy$
- 23. If $y = \left(x + \sqrt{1 + x^2}\right)^m$, prove that $(1 + x^2)y_{n+2} + (2n+1)xy_{n+1} + (n^2 m^2)y_n = 0.$
- 24. Determine the asymptotes of the curve $4(x^4 + y^4) 17x^2y^2 4x(4y^2 x^2) + 2(x^2 2) = 0$ and show that they pass through the points of intersection of the curve with the ellipse $x^2 + 4y^2 = 4$.

DEGREE EXAMINATION, APRIL 2019 I Year I Semester Differential Calculus

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Find the n^{th} differential coefficient of $\log(ax + b)$
- 2. Find the n^{th} derivative of e^{ax} .
- 3. If x = u(1+v) and y = v(1+u) find $\frac{\partial(x,y)}{\partial(u,v)}$.
- 4. State the necessary conditions for the existence of maxima or minima at a point.
- 5. Write the Cartesian formula for the radius of curvature
- 6. Find the radius of curvature for the curves $y = e^x$ at the point where it crosses the *y*-axes.
- 7. Find the co-ordinates of the centre of curvature of the curve xy = 2 at the point (2,1)
- 8. Find the radius of curvature of the curve $r^2 = a^2 \sin 2\theta$.
- 9. Define Asymptotes.
- 10. Show that the asymptotes of $x^2y^2 = c^2(x^2 + y^2)$ are the sides of a square.
- 11. Find the (p r) equation of the cardioid $r = a(1 \cos \theta)$
- 12. What is the radius of curvature of the curve $x^4 + y^4 = 2$ at the point (1, 1)?

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the n^{th} derivative of $\sin 2x \, \sin 4x \, \sin 6x$
- 14. Find the maximum or minimum values of $2(x^2 y^2) x^4 + y^4$
- 15. Show that the radius of curvature at any point of the catenary $y = c \cosh \frac{x}{c}$ is equal to the length of the portion of the normal intercepted between the curve and the axis of x.
- 16. From the polar equation of the parabola, show that $\rho^2 = ar$.
- 17. Find the asymptotes of $(x + y)^2 (x + 2y + 2) = x + 9y 2$.
- 18. If $y_1 = e^{a \sin^{-1} x}$ prove that $(1 x^2) y_{n+2} (2n+1) x y_{n+1} (n^2 + a^2) y_n = 0.$

16UMACT1A02 UMA/CT/1A02

19. Show that the evolute of the cycloid $x = a(\theta - \sin \theta); y = a(1 - \cos \theta)$ is another cycloid.

Section C $(3 \times 10 = 30)$ Marks

Answer any THREE questions

- 20. If $y = \sin(m \sin^{-1}x)$ prove that $(1 x^2) y_2 xy_1 + m^2 y = 0$ and $(1 x^2) y_{n+2} (2n+1) xy_{n+1} + (m^2 n^2) y_n = 0$.
- 21. If $u = a^3x^2 + b^3y^2 + c^3z^2$ where $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$, find the minimum value of u.
- 22. Find the radius of curvature at $x = y = \frac{3a}{2}$ to the curve $x^3 + y^3 = 3axy$
- 23. If $y = \left(x + \sqrt{1 + x^2}\right)^m$, prove that $(1 + x^2)y_{n+2} + (2n+1)xy_{n+1} + (n^2 m^2)y_n = 0.$
- 24. Determine the asymptotes of the curve $4(x^4 + y^4) 17x^2y^2 4x(4y^2 x^2) + 2(x^2 2) = 0$ and show that they pass through the points of intersection of the curve with the ellipse $x^2 + 4y^2 = 4$.