B.Sc DEGREE EXAMINATION, APRIL 2019 I Year II Semester Integral Calculus and Fourier Series

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Evaluate $\int x^2 e^{-2x} dx$. 2. Integrate $\int_0^{\pi/2} \sin^9 x dx$ 3. Evaluate $\int \tan^3 x dx$ 4. Evaluate $\int_0^1 \int_0^2 xy^2 dy dx$ 5. Evaluate $\int_0^a \int_0^b \int_0^c xy dx dx$
- 5. Evaluate $\int_0^a \int_0^b \int_0^c xyz \, dz \, dy \, dx$
- 6. Define gamma function.
- 7. Prove that : $\beta(m,n) = \beta(n,m)$
- 8. Show that: $\hat{\Gamma}(n+1) = n\hat{\Gamma}(n)$
- 9. Define a Fourier series in the interval [0, 2π].
- 10. Find the constant a_0 of the Fourier series for the function:

 $f(x) = x \cos x$ in $-\pi < x < \pi$

- 11. Without evaluating any Integral, write the half range series with Sine series for $f(x) = \sin^3 x$ in $(0,\pi)$
- 12. What is the co efficient of b_n for a half range Sine series in 0 < x < I.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

13. Obtain the reduction formula for $\int x^m (\log x)^n dx$.

14. Evaluate $\iint xy \, dy \, dx$ taken over the positive quadrant of the circles $x^2 + y^2 = a^2$

16UMACT2A04 UMA/CT/2A04

15. By Change of Order of Integration, evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dx dy$ 16. P.T $\beta(m,n) = 2 \int_{0}^{\frac{\pi}{2}} \sin^{2m-1}x \cos^{2n-1}x dx$ 17. Evaluate $\int_{0}^{\infty} e^{-x^{2}} dx$. 18. Expand $f(x) = x (-\pi < x < \pi)$ as a Fourier series with period 2π 19. Obtain the half range Sine series for f(x) = 1 - x in (0,1) Section C ($3 \times 10 = 30$) Marks Answer any THREE questions 20. Evaluate $\int_{0}^{\pi/2} \sin^{m}x \cos^{n}x dx$, by reducing m. 21. Evaluate $\int \int \int xyz dx dy dz$ taken through the positive octant of the sphere $x^{2}+y^{2}+z^{2}=1$ 22. Prove that: $\beta(m,n) = \frac{\hat{\Gamma}(m) \hat{\Gamma}(n)}{\frac{\pi}{2}}$

23. If f(x) =
$$\begin{cases} -x & in -\pi < x < 0\\ x & in & 0 \le x < \pi \end{cases}$$

Expand f(x) as Fourier series in the interval $-\pi$ to π .

Deduce that $\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$

24. Find a fourier series with period 3 to represent $f(x) = 2x - x^3$ in the range (0,3).

B.Sc DEGREE EXAMINATION, APRIL 2019 I Year II Semester Integral Calculus and Fourier Series

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Evaluate $\int x^2 e^{-2x} dx$. 2. Integrate $\int_0^{\pi/2} \sin^9 x dx$ 3. Evaluate $\int \tan^3 x dx$ 4. Evaluate $\int_0^1 \int_0^2 xy^2 dy dx$ 5. Evaluate $\int_0^a \int_0^b \int_0^c xy dx dx$
- 5. Evaluate $\int_0^a \int_0^b \int_0^c xyz \, dz \, dy \, dx$
- 6. Define gamma function.
- 7. Prove that : $\beta(m,n) = \beta(n,m)$
- 8. Show that: $\hat{\Gamma}(n+1) = n\hat{\Gamma}(n)$
- 9. Define a Fourier series in the interval [0, 2π].
- 10. Find the constant a_0 of the Fourier series for the function:

 $f(x) = x \cos x$ in $-\pi < x < \pi$

- 11. Without evaluating any Integral, write the half range series with Sine series for $f(x) = \sin^3 x$ in $(0,\pi)$
- 12. What is the co efficient of b_n for a half range Sine series in 0 < x < I.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

13. Obtain the reduction formula for $\int x^m (\log x)^n dx$.

14. Evaluate $\iint xy \, dy \, dx$ taken over the positive quadrant of the circles $x^2 + y^2 = a^2$

16UMACT2A04 UMA/CT/2A04

15. By Change of Order of Integration, evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dx dy$ 16. P.T $\beta(m,n) = 2 \int_{0}^{\frac{\pi}{2}} \sin^{2m-1}x \cos^{2n-1}x dx$ 17. Evaluate $\int_{0}^{\infty} e^{-x^{2}} dx$. 18. Expand $f(x) = x (-\pi < x < \pi)$ as a Fourier series with period 2π 19. Obtain the half range Sine series for f(x) = 1 - x in (0,1) Section C ($3 \times 10 = 30$) Marks Answer any THREE questions 20. Evaluate $\int_{0}^{\pi/2} \sin^{m}x \cos^{n}x dx$, by reducing m. 21. Evaluate $\int \int \int xyz dx dy dz$ taken through the positive octant of the sphere $x^{2}+y^{2}+z^{2}=1$ 22. Prove that: $\beta(m,n) = \frac{\hat{\Gamma}(m) \hat{\Gamma}(n)}{\frac{\pi}{2}}$

23. If f(x) =
$$\begin{cases} -x & in -\pi < x < 0\\ x & in & 0 \le x < \pi \end{cases}$$

Expand f(x) as Fourier series in the interval $-\pi$ to π .

Deduce that $\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$

24. Find a fourier series with period 3 to represent $f(x) = 2x - x^3$ in the range (0,3).