B.Sc DEGREE EXAMINATION, APRIL 2019 II Year IV Semester Allied Mathematics-II

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define Fourier Coefficients.
- 2. Find the constant a_0 of the Fourier series for the function $f(x)=\!\!x^2$ in $0\leq x\leq 2\pi.$
- 3. Define complete integrals.
- 4. Eliminate the arbitrary function f from $f(xy+z^2, x+y+z) = 0$.
- 5. Define Laplace transform.
- 6. Solve Laplace transform of f(x) = 1.
- 7. Write any two properties of inverse Laplace transform.
- 8. Find the inverse Laplace transform of $\frac{s}{(s^2+16)}$.
- 9. Define Gradient of a scalar point function.
- 10. Find the unit normal vector to the surfaces $x^2+y^2+z^2=1$ at the point (1,1,1).
- 11. If $\overrightarrow{\mathbf{r}} = \mathbf{x} \overrightarrow{\mathbf{i}} + \mathbf{y} \overrightarrow{\mathbf{j}} + \mathbf{z} \overrightarrow{\mathbf{k}}$, Show that $\nabla \cdot \overrightarrow{\mathbf{r}} = \mathbf{3}$.
- 12. State and prove the first shifting theorem on Laplace transform.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the Fourier series for $\mathbf{f}(\mathbf{x})$ in $(-\pi, \pi)$ if $\mathbf{f}(\mathbf{x}) = \begin{cases} \mathbf{0}, & -\pi < \mathbf{x} < \mathbf{0}, \\ \pi, & \mathbf{0} < \mathbf{x} < \pi, \end{cases}$
- 14. Solve the equation $p^2+q^2=x+y$
- 15. Evaluate $\mathbf{L} \left[\mathbf{e}^{2\mathbf{t}} \mathbf{s} i n^3 \mathbf{t} \right]$.

16. Evaluate $L^{-1}\left[\frac{1}{(s+1)(s+2)}\right]$.

17. If $\mathbf{f}(\mathbf{r}) = \mathbf{r}^{\mathbf{n}}$, then prove that $\nabla \mathbf{r}^{\mathbf{n}} = \mathbf{n} \mathbf{r}^{\mathbf{n-2}} \overrightarrow{\mathbf{r}}$ where $\overrightarrow{\mathbf{r}}$ is the position vector.

18. Find the Fourier series for f(x) = x in the interval $(0, 2\pi)$.

16UPHAT4MA4 UPH/AT/4MA4

19. Form the Partial differential equation by eliminating the arbitrary function **f** from $\mathbf{z} = \mathbf{f}\left(\frac{\mathbf{x}y}{\mathbf{z}}\right)$.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Find the Fourier series for the function f(x) = |x| in -π ≤ x ≤ π. Deduce that 1/1² + 1/3² + 1/5² + 1/7² + ... = π²/8
 21. Solve x (y-z) p+y (z-x) q=z(x-y)
 22. Evaluate L [e^t-e^{2t}/t]
 23. Evaluate L⁻¹ [s+2/((s²+4s+5)²)]
 24. Verify Green's theorem for ∫_C (x² + y²) dx 2xydy where C is the rectangle
 - in the xy plane bounded by y = 0, y = b, x = 0, x = a.

B.Sc DEGREE EXAMINATION, APRIL 2019 II Year IV Semester Allied Mathematics-II

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define Fourier Coefficients.
- 2. Find the constant a_0 of the Fourier series for the function $f(x)=\!\!x^2$ in $0\leq x\leq 2\pi.$
- 3. Define complete integrals.
- 4. Eliminate the arbitrary function f from $f(xy+z^2, x+y+z) = 0$.
- 5. Define Laplace transform.
- 6. Solve Laplace transform of f(x) = 1.
- 7. Write any two properties of inverse Laplace transform.
- 8. Find the inverse Laplace transform of $\frac{s}{(s^2+16)}$.
- 9. Define Gradient of a scalar point function.
- 10. Find the unit normal vector to the surfaces $x^2+y^2+z^2=1$ at the point (1,1,1).
- 11. If $\overrightarrow{\mathbf{r}} = \mathbf{x} \overrightarrow{\mathbf{i}} + \mathbf{y} \overrightarrow{\mathbf{j}} + \mathbf{z} \overrightarrow{\mathbf{k}}$, Show that $\nabla \cdot \overrightarrow{\mathbf{r}} = \mathbf{3}$.
- 12. State and prove the first shifting theorem on Laplace transform.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the Fourier series for $\mathbf{f}(\mathbf{x})$ in $(-\pi, \pi)$ if $\mathbf{f}(\mathbf{x}) = \begin{cases} \mathbf{0}, & -\pi < \mathbf{x} < \mathbf{0}, \\ \pi, & \mathbf{0} < \mathbf{x} < \pi, \end{cases}$
- 14. Solve the equation $p^2+q^2=x+y$
- 15. Evaluate $\mathbf{L} \left[\mathbf{e}^{2\mathbf{t}} \mathbf{s} i n^3 \mathbf{t} \right]$.

16. Evaluate $L^{-1}\left[\frac{1}{(s+1)(s+2)}\right]$.

17. If $\mathbf{f}(\mathbf{r}) = \mathbf{r}^{\mathbf{n}}$, then prove that $\nabla \mathbf{r}^{\mathbf{n}} = \mathbf{n} \mathbf{r}^{\mathbf{n-2}} \overrightarrow{\mathbf{r}}$ where $\overrightarrow{\mathbf{r}}$ is the position vector.

18. Find the Fourier series for f(x) = x in the interval $(0, 2\pi)$.

16UPHAT4MA4 UPH/AT/4MA4

19. Form the Partial differential equation by eliminating the arbitrary function **f** from $\mathbf{z} = \mathbf{f}\left(\frac{\mathbf{x}y}{\mathbf{z}}\right)$.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Find the Fourier series for the function f(x) = |x| in -π ≤ x ≤ π. Deduce that 1/1² + 1/3² + 1/5² + 1/7² + ... = π²/8
 21. Solve x (y-z) p+y (z-x) q=z(x-y)
 22. Evaluate L [e^t-e^{2t}/t]
 23. Evaluate L⁻¹ [s+2/((s²+4s+5)²)]
 24. Verify Green's theorem for ∫_C (x² + y²) dx 2xydy where C is the rectangle
 - in the xy plane bounded by y = 0, y = b, x = 0, x = a.