B.Sc. DEGREE EXAMINATION, APRIL 2019 II Year IV Semester STATICS

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. State Newton's laws of motion.
- 2. State Hooke's law.
- 3. State the Triangle law of forces.
- 4. State Lami's theorem.
- 5. State any two laws of friction.
- 6. Define angle of friction.
- 7. Define moment of a couple.
- 8. What is arm and axis of a couple?
- 9. Differentiate between centre of mass and centre of gravity.
- 10. Give the mass centre of a lamina in the form of a sector of a circle.
- 11. When does the resultant of a system of coplanar forces reduce to (i) a single force, (ii) a couple?
- 12. What is the mass centre of three uniform rods forming a triangle?

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. The magnitude of the resultant of two given forces P, Q is R. If Q is doubled, then R is doubled. If Q is reversed, then R is also doubled. Show that $P: Q: R = \sqrt{2}: \sqrt{3}: \sqrt{2}.$
- 14. Let O be the orthocentre of the triangle ABC. If forces of magnitude P, Q < R acting along OA, Ob, OC are in equilibrium, show that $\frac{P}{a} = \frac{Q}{b} = \frac{R}{c}$.
- 15. A uniform plank AB of length 2a and weight W is supported horizontally on two horizontal pegs C and D at a distance d apart. The greatest weights that can be placed at the two ends in succession without upsetting the plank are W_1 and W_2 respectively. Show that $\frac{W_1}{W+W_1} + \frac{W_2}{W+W_2} = \frac{d}{a}$.

17UMACT4A08 UMA/CT/4A08

- 16. Show that the moment of a couple is independent of the point about which the moment is obtained.
- 17. A rod of length 5a is bent so as to form five sides of a regular hexagon. Show that its centre of mass is at a distance $a\sqrt{1.33}$ from either end of the rod.
- 18. Let E be the midpoint of the side CD of a square ABCD. Forces $16, 20, 4\sqrt{5}, 12\sqrt{2}$ act along $\overline{AB}, \overline{AD}, \overline{EA}, \overline{CA}$. Show that they are in equilibrium.
- 19. Find the mass centre of triangular lamina.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Find the magnitude and direction of the resultant of two forces $ec{F_1}$ and $ec{F_2}.$
- 21. Find the least force required to drag a particle on a rough horizontal plane and show that the least force acts in a direction making with the horizontal, an angle equal to the angle of friction.
- 22. State and prove Varignon's theorem.
- 23. *P*, *Q*, *R* are points on the sides *BC*, *CA*, *AB* of a triangle *ABC*, dividing them internally in the same ratio $1 + \lambda : 1 \lambda$. Show that the forces $\overline{AP}, \overline{BQ}, \overline{CR}$ acting at *A*, *B*, *C* are equivalent to a couple of moment $2\lambda\Delta$, where Δ is the area of the triangle *ABC*.
- 24. Find the mass centre of a solid hemisphere of radius 'a' using integration.

B.Sc. DEGREE EXAMINATION, APRIL 2019 II Year IV Semester STATICS

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. State Newton's laws of motion.
- 2. State Hooke's law.
- 3. State the Triangle law of forces.
- 4. State Lami's theorem.
- 5. State any two laws of friction.
- 6. Define angle of friction.
- 7. Define moment of a couple.
- 8. What is arm and axis of a couple?
- 9. Differentiate between centre of mass and centre of gravity.
- 10. Give the mass centre of a lamina in the form of a sector of a circle.
- 11. When does the resultant of a system of coplanar forces reduce to (i) a single force, (ii) a couple?
- 12. What is the mass centre of three uniform rods forming a triangle?

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. The magnitude of the resultant of two given forces P, Q is R. If Q is doubled, then R is doubled. If Q is reversed, then R is also doubled. Show that $P: Q: R = \sqrt{2}: \sqrt{3}: \sqrt{2}.$
- 14. Let O be the orthocentre of the triangle ABC. If forces of magnitude P, Q < R acting along OA, Ob, OC are in equilibrium, show that $\frac{P}{a} = \frac{Q}{b} = \frac{R}{c}$.
- 15. A uniform plank AB of length 2a and weight W is supported horizontally on two horizontal pegs C and D at a distance d apart. The greatest weights that can be placed at the two ends in succession without upsetting the plank are W_1 and W_2 respectively. Show that $\frac{W_1}{W+W_1} + \frac{W_2}{W+W_2} = \frac{d}{a}$.

17UMACT4A08 UMA/CT/4A08

- 16. Show that the moment of a couple is independent of the point about which the moment is obtained.
- 17. A rod of length 5a is bent so as to form five sides of a regular hexagon. Show that its centre of mass is at a distance $a\sqrt{1.33}$ from either end of the rod.
- 18. Let E be the midpoint of the side CD of a square ABCD. Forces $16, 20, 4\sqrt{5}, 12\sqrt{2}$ act along $\overline{AB}, \overline{AD}, \overline{EA}, \overline{CA}$. Show that they are in equilibrium.
- 19. Find the mass centre of triangular lamina.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Find the magnitude and direction of the resultant of two forces $ec{F_1}$ and $ec{F_2}.$
- 21. Find the least force required to drag a particle on a rough horizontal plane and show that the least force acts in a direction making with the horizontal, an angle equal to the angle of friction.
- 22. State and prove Varignon's theorem.
- 23. *P*, *Q*, *R* are points on the sides *BC*, *CA*, *AB* of a triangle *ABC*, dividing them internally in the same ratio $1 + \lambda : 1 \lambda$. Show that the forces $\overline{AP}, \overline{BQ}, \overline{CR}$ acting at *A*, *B*, *C* are equivalent to a couple of moment $2\lambda\Delta$, where Δ is the area of the triangle *ABC*.
- 24. Find the mass centre of a solid hemisphere of radius 'a' using integration.