B.C.A DEGREE EXAMINATION, APRIL 2019 I Year I Semester Allied Mathematics - I

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- Negate the statement "Every student in this class is intelligent" in two different ways.
- 2. Show that $P \rightarrow \theta$ and $\neg P \lor Q$ are logically equivalent.
- 3. Write down the expansion of $\tan n\theta$
- 4. If $\frac{\sin\theta}{\theta} = \frac{5045}{5046}$ show that θ is equal to $1^{\circ}58'$ nearly.
- 5. Write down the relations between circular functions and hyperbolic functions.
- 6. Prove that $\tanh 2x = \frac{2 \tan hx}{1 + \tan h^2 x}$
- 7. Find $L(\sin^2 t)$.
- 8. State the conditions for the existence of Laplace transform of a function.

9.
$$L^{-1}\left(\frac{s}{(s+2)^2}\right)$$
.
10. $L^{-1}\left(\frac{1}{(s+2)^{20}}\right)$.

- 11. Write down the series expansion of $\sin hx$.
- 12. State a change of scale property of Laplace transform.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Prove $\neg P \rightarrow (Q \rightarrow R) \equiv Q \rightarrow (P \lor R)$
- 14. Express $\frac{\cos 7\theta}{\cos \theta}$ as a polynomial in $\sin \theta$
- 15. Show that $\cos h^{-1}x = \pm \log(x + \sqrt{x^2 1})$
- 16. Find the Laplace transform of $t^2 e^{-t} \cos t$

17. Find the inverse Laplace transform of $\frac{s^2 - s + 2}{s(s+2)(s-3)}$

15UCAAT1AM1 UCA/AT/1AM1

18. Find $L\left[\int_0^t \frac{e^{-t}\sin t}{t}dt\right]$

19. Separate into real and imaginary parts $tan^{-1}(x + iy)$

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Without using truth table prove the given statement formula is tautology $((P \lor Q) \land \neg(\neg P \land (\neg Q \lor \neg R))) \lor (\neg P \land \neg Q) \lor (\neg P \land (\neg R)$
- 21. Expand $\sin^3\theta\cos^4\theta$ in terms of sines of multiples of θ
- 22. If $tan(\theta + i\phi) = x + iy$, then show that $1)x^2 + y^2 + 2x \cot 2\theta = 1$

$$2)x^2 + y^2 - 2y \cot h2\theta = -1$$

23. Find

$$a)L\left(\frac{e^{-3t}-e^{-4t}}{t}\right)$$

$$b)L(e^{-5t}\cos^2 t)$$

24. Find

a)
$$L^{-1} \left(\log \frac{1+s}{s^2} \right)$$

b) $L^{-1} (\tan^{-1}(s+1))$

B.C.A DEGREE EXAMINATION, APRIL 2019 I Year I Semester Allied Mathematics - I

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- Negate the statement "Every student in this class is intelligent" in two different ways.
- 2. Show that $P \rightarrow \theta$ and $\neg P \lor Q$ are logically equivalent.
- 3. Write down the expansion of $\tan n\theta$
- 4. If $\frac{\sin\theta}{\theta} = \frac{5045}{5046}$ show that θ is equal to $1^{\circ}58'$ nearly.
- 5. Write down the relations between circular functions and hyperbolic functions.
- 6. Prove that $\tanh 2x = \frac{2 \tan hx}{1 + \tan h^2 x}$
- 7. Find $L(\sin^2 t)$.
- 8. State the conditions for the existence of Laplace transform of a function.

9.
$$L^{-1}\left(\frac{s}{(s+2)^2}\right)$$
.
10. $L^{-1}\left(\frac{1}{(s+2)^{20}}\right)$.

- 11. Write down the series expansion of $\sin hx$.
- 12. State a change of scale property of Laplace transform.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Prove $\neg P \rightarrow (Q \rightarrow R) \equiv Q \rightarrow (P \lor R)$
- 14. Express $\frac{\cos 7\theta}{\cos \theta}$ as a polynomial in $\sin \theta$
- 15. Show that $\cos h^{-1}x = \pm \log(x + \sqrt{x^2 1})$
- 16. Find the Laplace transform of $t^2 e^{-t} \cos t$

17. Find the inverse Laplace transform of $\frac{s^2 - s + 2}{s(s+2)(s-3)}$

15UCAAT1AM1 UCA/AT/1AM1

18. Find $L\left[\int_0^t \frac{e^{-t}\sin t}{t}dt\right]$

19. Separate into real and imaginary parts $tan^{-1}(x + iy)$

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Without using truth table prove the given statement formula is tautology $((P \lor Q) \land \neg(\neg P \land (\neg Q \lor \neg R))) \lor (\neg P \land \neg Q) \lor (\neg P \land (\neg R)$
- 21. Expand $\sin^3\theta\cos^4\theta$ in terms of sines of multiples of θ
- 22. If $tan(\theta + i\phi) = x + iy$, then show that $1)x^2 + y^2 + 2x \cot 2\theta = 1$

$$2)x^2 + y^2 - 2y \cot h2\theta = -1$$

23. Find

$$a)L\left(\frac{e^{-3t}-e^{-4t}}{t}\right)$$

$$b)L(e^{-5t}\cos^2 t)$$

24. Find

a)
$$L^{-1} \left(\log \frac{1+s}{s^2} \right)$$

b) $L^{-1} (\tan^{-1}(s+1))$