B.Sc DEGREE EXAMINATION, APRIL 2019 III Year V Semester Numerical Methods

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define an algebraic and transcendental equation.
- 2. Show that a root of 3x cosx + 1 lies between 0 and $\frac{\pi}{2}$
- 3. Solve the following equation by Back substitution method 2x + 3y + 2z = 7. -3y + z = -2. 4z = 4.
- 4. Prove that $E = 1 + \triangle$
- 5. If $f(x) = \frac{1}{r^2}$, Find the first divided differences of [a, b].
- 6. Write the Lagrange's interpolation formula.
- 7. Write the Newton-Cote's quadrature formula.
- 8. Define Numerical differentiation.
- 9. Write the Adams-Bashforth predictor formula.
- 10. Using Taylor's method solve $\frac{dy}{dx} = 1 + xy$ with $y_0 = 2$. Find y(0.1).
- 11. Find the first and second order differences for $f(x) = ab^{cx}$.
- 12. What is Inverse Interpolation ?

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Using Bisection method, find the positive root of $x^3 x 1 = 0$ correct to two decimal places.
- 14. Solve the following system of equations using Gauss Elimination method :

$$x + y + z = 9.$$

 $2x - 3y + 4z = 13.$
 $3x + 4y + 5z = 40$

UMA/CE/5001

15. Using Newton's divided difference formula ,find f(8) from the following table

X		5	7	11	13	17
f(x)	150	392	1452	2366	5202

16. Evaluate $\int_0^6 \frac{1}{1+x} dx$, by using Trapezoidal rule

17. Using Picard's method ,solve
$$\frac{dy}{dx} = 1 + xy$$
 with $y(0) = 2$. Find $y(0.1), y(0.2)$.

18. Form the Forward difference table for the following data

Х	0	1	2	3	4
У	8	11	9	15	6

19. Using Lagrange's formula ,find the value of y at x = 6 from the following data.

X	3	7	9	10
У	168	120	72	63

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Using Newton-Raphson method, find the positive root of $f(x) = 2x^3 3x 6 = 0$ correct to four decimal places.
- 21. Solve the following system of equations , using Gauss-Seidel iteration method :

10x + 2y + z = 9.

x + 10y - z = -22.

-2x + 3y + 10z = 22.

22. Find f(0,2) from the following table

X	0		2	3	4	5	6
f(x)	176	185	194	203	212	220	229

23. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 51 from the following data

X	50	60	70	80	90
У	19.96	36.65	58.81	77.21	94.61

24. Using Runge-Kutta method of the fourth order find y(0.1),given that $\frac{dy}{dx} = \frac{1}{x+y}$, y(0) = 1

B.Sc DEGREE EXAMINATION, APRIL 2019 III Year V Semester Numerical Methods

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define an algebraic and transcendental equation.
- 2. Show that a root of 3x cosx + 1 lies between 0 and $\frac{\pi}{2}$
- 3. Solve the following equation by Back substitution method 2x + 3y + 2z = 7. -3y + z = -2. 4z = 4.
- 4. Prove that $E = 1 + \triangle$
- 5. If $f(x) = \frac{1}{r^2}$, Find the first divided differences of [a, b].
- 6. Write the Lagrange's interpolation formula.
- 7. Write the Newton-Cote's quadrature formula.
- 8. Define Numerical differentiation.
- 9. Write the Adams-Bashforth predictor formula.
- 10. Using Taylor's method solve $\frac{dy}{dx} = 1 + xy$ with $y_0 = 2$. Find y(0.1).
- 11. Find the first and second order differences for $f(x) = ab^{cx}$.
- 12. What is Inverse Interpolation ?

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Using Bisection method, find the positive root of $x^3 x 1 = 0$ correct to two decimal places.
- 14. Solve the following system of equations using Gauss Elimination method :

$$x + y + z = 9.$$

 $2x - 3y + 4z = 13.$
 $3x + 4y + 5z = 40$

UMA/CE/5001

15. Using Newton's divided difference formula ,find f(8) from the following table

X		5	7	11	13	17
f(x)	150	392	1452	2366	5202

16. Evaluate $\int_0^6 \frac{1}{1+x} dx$, by using Trapezoidal rule

17. Using Picard's method ,solve
$$\frac{dy}{dx} = 1 + xy$$
 with $y(0) = 2$. Find $y(0.1), y(0.2)$.

18. Form the Forward difference table for the following data

Х	0	1	2	3	4
У	8	11	9	15	6

19. Using Lagrange's formula ,find the value of y at x = 6 from the following data.

X	3	7	9	10
У	168	120	72	63

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Using Newton-Raphson method, find the positive root of $f(x) = 2x^3 3x 6 = 0$ correct to four decimal places.
- 21. Solve the following system of equations , using Gauss-Seidel iteration method :

10x + 2y + z = 9.

x + 10y - z = -22.

-2x + 3y + 10z = 22.

22. Find f(0,2) from the following table

X	0		2	3	4	5	6
f(x)	176	185	194	203	212	220	229

23. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 51 from the following data

X	50	60	70	80	90
У	19.96	36.65	58.81	77.21	94.61

24. Using Runge-Kutta method of the fourth order find y(0.1),given that $\frac{dy}{dx} = \frac{1}{x+y}$, y(0) = 1