B.Sc DEGREE EXAMINATION, APRIL 2019 III Year V Semester Real Analysis

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define a countable set with an example .
- 2. State Least Upper bound axiom.
- 3. Define a bounded sequence.
- 4. Prove that $\sum_{n=1}^{8} \frac{1}{n(n+1)}$ converges.
- 5. If a sequence $\{s_n\}_{n=1}^8$ converges to 0 and $s_n > 0$ for $n \in N$, then prove that the sequence $\left\{\frac{1}{S_n}\right\}_{n=1}^8$ diverges to ∞ .
- 6. If f is continuous at $a \in R'$ then prove that |f| is also continuous at a.
- 7. Define an open ball in a metric space.
- 8. Define a connected set.
- 9. Define a complete metric space.
- 10. Prove that if the real-valued function f has a derivative at the point $c \in R'$, then f is continuous at c.
- 11. If f'(x) = 0 for every x in the closed bounded interval [a,b] then prove that f is constant on [a,b].
- 12. State Rolle's theorem.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. If A_1, A_2, \ldots are countable sets, then prove that $\bigcup_{n=1}^{\infty} A_n$ is countable.
- 14. If the sequence of real numbers $\{s_n\}_{n=1}^{\infty}$ is convergent then prove that $\{s_n\}_{n=1}^{\infty}$ is bounded.
- 15. If the sequence of real numbers $\{s_n\}_{n=1}^{\infty}$ converges, then prove that $\{s_n\}_{n=1}^{\infty}$ is a Cauchy sequence.

UMA/CT/5A10

- 16. Prove that if $\sum_{n=1}^{\infty} a_n$ is a convergent series then $\lim_{n\to\infty} a_n = 0$.
- 17. If G_1 and G_2 are open subsets of the metric space M then prove that $G_1 \cap G_2$ is also open.
- 18. Let f be a continuous function from a metric space M_1 into a metric space M_2 . If M_1 is connected, then prove that the range of f is also connected.
- 19. State and prove the Darboux property.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Define a non-decreasing sequence and prove that a nondecreasing sequence which is bounded above is convergent.
- 21. If $\{a_n\}_{n=1}^{\infty}$ is a sequence of positive numbers such that
 - (a.) $a_1 \ge a_2 \ge \cdots \ge a_n \ge a_{n+1} \ge \ldots$ and
 - (b.) $lim_{n\to\infty}a_n = 0$, then prove that the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1}a_n$ is convergent.
- 22. Prove that
 - (i) if G is an open subset of the metric space M, then G' = M G is closed.
 - (ii) if F is closed subset of M, then F' = M F is open.
- 23.. Let (M, ρ) be a complete metric space. Prove that if T is a contraction on M, then there is one and only one point x in M such that Tx=x.
- 24. State and prove the second Fundamental theorem of calculus.

B.Sc DEGREE EXAMINATION, APRIL 2019 III Year V Semester Real Analysis

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define a countable set with an example .
- 2. State Least Upper bound axiom.
- 3. Define a bounded sequence.
- 4. Prove that $\sum_{n=1}^{8} \frac{1}{n(n+1)}$ converges.
- 5. If a sequence $\{s_n\}_{n=1}^8$ converges to 0 and $s_n > 0$ for $n \in N$, then prove that the sequence $\left\{\frac{1}{S_n}\right\}_{n=1}^8$ diverges to ∞ .
- 6. If f is continuous at $a \in R'$ then prove that |f| is also continuous at a.
- 7. Define an open ball in a metric space.
- 8. Define a connected set.
- 9. Define a complete metric space.
- 10. Prove that if the real-valued function f has a derivative at the point $c \in R'$, then f is continuous at c.
- 11. If f'(x) = 0 for every x in the closed bounded interval [a,b] then prove that f is constant on [a,b].
- 12. State Rolle's theorem.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. If A_1, A_2, \ldots are countable sets, then prove that $\bigcup_{n=1}^{\infty} A_n$ is countable.
- 14. If the sequence of real numbers $\{s_n\}_{n=1}^{\infty}$ is convergent then prove that $\{s_n\}_{n=1}^{\infty}$ is bounded.
- 15. If the sequence of real numbers $\{s_n\}_{n=1}^{\infty}$ converges, then prove that $\{s_n\}_{n=1}^{\infty}$ is a Cauchy sequence.

UMA/CT/5A10

- 16. Prove that if $\sum_{n=1}^{\infty} a_n$ is a convergent series then $\lim_{n\to\infty} a_n = 0$.
- 17. If G_1 and G_2 are open subsets of the metric space M then prove that $G_1 \cap G_2$ is also open.
- 18. Let f be a continuous function from a metric space M_1 into a metric space M_2 . If M_1 is connected, then prove that the range of f is also connected.
- 19. State and prove the Darboux property.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Define a non-decreasing sequence and prove that a nondecreasing sequence which is bounded above is convergent.
- 21. If $\{a_n\}_{n=1}^{\infty}$ is a sequence of positive numbers such that
 - (a.) $a_1 \ge a_2 \ge \cdots \ge a_n \ge a_{n+1} \ge \ldots$ and
 - (b.) $lim_{n\to\infty}a_n = 0$, then prove that the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1}a_n$ is convergent.
- 22. Prove that
 - (i) if G is an open subset of the metric space M, then G' = M G is closed.
 - (ii) if F is closed subset of M, then F' = M F is open.
- 23.. Let (M, ρ) be a complete metric space. Prove that if T is a contraction on M, then there is one and only one point x in M such that Tx=x.
- 24. State and prove the second Fundamental theorem of calculus.