B.Sc DEGREE EXAMINATION, APRIL 2019 I Year I Semester Trigonometry and Analytical Geometry of 2 Dimensions

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Write down the expansion of $tan \ n\theta$ in powers of $tan \ \theta$.
- 2. Write down the expansion of $sin \theta$ in a series of ascending powers of θ .
- 3. Express $\sinh^{-1}x$ in terms of logarithmic function.
- 4. Express $tanh^{-1}x$ in terms of logarithmic function.
- 5. Write down the expression for log x.
- 6. Write down the expression for $Log_e(iy)$.
- 7. State Gregory's series
- 8. What is sum to infinity of the series $1 + \frac{1}{2}\cos 2\theta \frac{1}{2.4}\cos 4\theta + \frac{1.3}{2.4.6}\cos 6\theta \dots$ for $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.
- 9. Write down the polar of a point (x_1, y_1) with respect to a parabola $y^2 = 4ax$.
- 10. Write down the equation of the tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at (x_1, y_1) .

11. Show that
$$sech^2 x = 1 - tanh^2 x$$

12. Write down the expansion of $\cos \theta$ in powers of θ , when θ is expressed in radians.

Section B
$$(5 \times 5 = 25)$$
 Marks

Answer any **FIVE** questions

- 13. Express $cos \ 8\theta$ in terms of $sin \ \theta$.
- 14. Prove that $cosh^2x + sinh^2x = cosh 2x$.

15. Find Log(1-i).

16. Sum to infinity of the series $c \sin \alpha + \frac{c^2}{2!} \sin 2\alpha + \frac{c^3}{3!} \sin 3\alpha + \dots$

- 17. Find the polar of the point (3,4) with respect to the parabola $y^2 = 4ax$.
- 18. Expand $cos^6\theta$ in series of cosines of multiples of θ .
- 19. Express $cosh^6\theta$ in terms of hyperbolic cosines of multiples of θ .

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Express $\frac{\sin 6\theta}{\sin \theta}$ in terms of $\cos \theta$.
- 21. If sin(A + iB) = x + iy, then prove that

a.)
$$\frac{x^2}{\sin^2 A} - \frac{y^2}{\cos^2 A} = 1.$$

b.) $\frac{x^2}{\cosh^2 B} + \frac{y^2}{\sinh^2 B} = 1$

- 22. Deduce the expansion of $tan^{-1}x$ in powers of x from the expansion of log(a+ib).
- 23. Find the sum to infinity of the series $\sin \alpha + c \sin (\alpha + \beta) + \frac{c^2}{2} \sin (\alpha + 2\beta) + \dots$ when |c| < 1.
- 24. Find the locus of poles of all tangents to the parabola $y^2 = 4ax$ with the respect to parabola $y^2 = 4bx$.

B.Sc DEGREE EXAMINATION, APRIL 2019 I Year I Semester Trigonometry and Analytical Geometry of 2 Dimensions

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Write down the expansion of $tan \ n\theta$ in powers of $tan \ \theta$.
- 2. Write down the expansion of $sin \theta$ in a series of ascending powers of θ .
- 3. Express $\sinh^{-1}x$ in terms of logarithmic function.
- 4. Express $tanh^{-1}x$ in terms of logarithmic function.
- 5. Write down the expression for log x.
- 6. Write down the expression for $Log_e(iy)$.
- 7. State Gregory's series
- 8. What is sum to infinity of the series $1 + \frac{1}{2}\cos 2\theta \frac{1}{2.4}\cos 4\theta + \frac{1.3}{2.4.6}\cos 6\theta \dots$ for $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.
- 9. Write down the polar of a point (x_1, y_1) with respect to a parabola $y^2 = 4ax$.
- 10. Write down the equation of the tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at (x_1, y_1) .

11. Show that
$$sech^2 x = 1 - tanh^2 x$$

12. Write down the expansion of $\cos \theta$ in powers of θ , when θ is expressed in radians.

Section B
$$(5 \times 5 = 25)$$
 Marks

Answer any **FIVE** questions

- 13. Express $cos \ 8\theta$ in terms of $sin \ \theta$.
- 14. Prove that $cosh^2x + sinh^2x = cosh 2x$.

15. Find Log(1-i).

16. Sum to infinity of the series $c \sin \alpha + \frac{c^2}{2!} \sin 2\alpha + \frac{c^3}{3!} \sin 3\alpha + \dots$

- 17. Find the polar of the point (3,4) with respect to the parabola $y^2 = 4ax$.
- 18. Expand $cos^6\theta$ in series of cosines of multiples of θ .
- 19. Express $cosh^6\theta$ in terms of hyperbolic cosines of multiples of θ .

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Express $\frac{\sin 6\theta}{\sin \theta}$ in terms of $\cos \theta$.
- 21. If sin(A + iB) = x + iy, then prove that

a.)
$$\frac{x^2}{\sin^2 A} - \frac{y^2}{\cos^2 A} = 1.$$

b.) $\frac{x^2}{\cosh^2 B} + \frac{y^2}{\sinh^2 B} = 1$

- 22. Deduce the expansion of $tan^{-1}x$ in powers of x from the expansion of log(a+ib).
- 23. Find the sum to infinity of the series $\sin \alpha + c \sin (\alpha + \beta) + \frac{c^2}{2} \sin (\alpha + 2\beta) + \dots$ when |c| < 1.
- 24. Find the locus of poles of all tangents to the parabola $y^2 = 4ax$ with the respect to parabola $y^2 = 4bx$.