B.Sc DEGREE EXAMINATION, APRIL 2019 I Year II Semester Classical Algebra

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. State Binomial theorem
- 2. Find the coefficient of x^n in the expansion of e^{a+bx}
- 3. Give an example for symmetric and skew symmetric matrices.
- 4. Prove that the matrix $\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$ is unitary.
- 5. Form a rational cubic equation which shall have for roots 1, $3 \sqrt{-2}$.
- 6. Frame an equation with rational coefficients, one of whose roots is $\sqrt{5} + \sqrt{2}$
- 7. If α , β , γ are the roots of the equation $ax^3 + bx^2 + cx + d = 0$, find the equation whose roots are α^2 , β^2 , γ^2
- 8. If α , β , γ are the roots of the equation $x^3 + qx + r = 0$, find the equation whose roots are $\beta + \gamma 2\alpha$, $\gamma + \alpha 2\beta$, $\alpha + \beta 2\gamma$.
- 9. Find the number and sum of all the divisors of 360
- 10. Find the number of integers less than n and prime to it when n = 729 and 720.
- 11. State Wilson's theorem.
- 12. Show that $\begin{bmatrix} 4 & 1-i \\ 1+i & 2 \end{bmatrix}$ is Hermitian.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the sum to infinity of the series $1 + \frac{2^3}{2!} + \frac{3^3}{3!} + \frac{4^3}{4!} + \dots \infty$ 14. Find the eigen value and eigen vectors of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}$
- 15. Solve the equation $x^3 12x^2 + 39x 28 = 0$ whose roots are in A.P.
- 16. If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of $(\alpha^2 + 1)(\beta^2 + 1)(\gamma^2 + 1)$.

UMA/CT/2003

- 17. Find a number having the remainders 5, 4, 3, 2 when divided by 6, 5, 4, 3 respectively.
- 18. Show that every square matrix can be uniquely expressed as the sum of a symmetric and skew-symmetric matrix.

19. If $\log(1 - x + x^2) = a_1 x + a_2 x^2 + a_3 x^3 + \dots \infty$ show that $a_3 + a_6 + a_9 = \frac{3}{2} \log 2$.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Find sum to infinity of the series $\frac{1 \cdot 3}{2 \cdot 4 \cdot 6 \cdot 8} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10} + \frac{1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10 \cdot 12} + \dots \infty$
- 21. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$. Also find A^{-1}
- 22. If the sum of two roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$ equals the sum of the other two, prove that $p^3 + 8r = 4pq$.
- 23. Solve the equation $6x^6 35x^5 + 56x^4 56x^2 + 35x 6 = 0$.
- 24. Show that if x and y are both prime to the prime number n, then prove that $x^{n-1} y^{n-1}$ is divisible by n. Deduce that $x^{12} y^{12}$ is divisible by 1365.

B.Sc DEGREE EXAMINATION, APRIL 2019 I Year II Semester Classical Algebra

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. State Binomial theorem
- 2. Find the coefficient of x^n in the expansion of e^{a+bx}
- 3. Give an example for symmetric and skew symmetric matrices.
- 4. Prove that the matrix $\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$ is unitary.
- 5. Form a rational cubic equation which shall have for roots 1, $3 \sqrt{-2}$.
- 6. Frame an equation with rational coefficients, one of whose roots is $\sqrt{5} + \sqrt{2}$
- 7. If α , β , γ are the roots of the equation $ax^3 + bx^2 + cx + d = 0$, find the equation whose roots are α^2 , β^2 , γ^2
- 8. If α , β , γ are the roots of the equation $x^3 + qx + r = 0$, find the equation whose roots are $\beta + \gamma 2\alpha$, $\gamma + \alpha 2\beta$, $\alpha + \beta 2\gamma$.
- 9. Find the number and sum of all the divisors of 360
- 10. Find the number of integers less than n and prime to it when n = 729 and 720.
- 11. State Wilson's theorem.
- 12. Show that $\begin{bmatrix} 4 & 1-i \\ 1+i & 2 \end{bmatrix}$ is Hermitian.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the sum to infinity of the series $1 + \frac{2^3}{2!} + \frac{3^3}{3!} + \frac{4^3}{4!} + \dots \infty$ 14. Find the eigen value and eigen vectors of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}$
- 15. Solve the equation $x^3 12x^2 + 39x 28 = 0$ whose roots are in A.P.
- 16. If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of $(\alpha^2 + 1)(\beta^2 + 1)(\gamma^2 + 1)$.

UMA/CT/2003

- 17. Find a number having the remainders 5, 4, 3, 2 when divided by 6, 5, 4, 3 respectively.
- 18. Show that every square matrix can be uniquely expressed as the sum of a symmetric and skew-symmetric matrix.

19. If $\log(1 - x + x^2) = a_1 x + a_2 x^2 + a_3 x^3 + \dots \infty$ show that $a_3 + a_6 + a_9 = \frac{3}{2} \log 2$.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Find sum to infinity of the series $\frac{1 \cdot 3}{2 \cdot 4 \cdot 6 \cdot 8} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10} + \frac{1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10 \cdot 12} + \dots \infty$
- 21. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$. Also find A^{-1}
- 22. If the sum of two roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$ equals the sum of the other two, prove that $p^3 + 8r = 4pq$.
- 23. Solve the equation $6x^6 35x^5 + 56x^4 56x^2 + 35x 6 = 0$.
- 24. Show that if x and y are both prime to the prime number n, then prove that $x^{n-1} y^{n-1}$ is divisible by n. Deduce that $x^{12} y^{12}$ is divisible by 1365.