UMA/CT/4007

B.Sc. DEGREE EXAMINATION, APRIL 2019 II Year IV Semester VECTOR CALCULUS, FOURIER TRANSFORMS AND Z TRANSFORMS

Time: 3 Hours Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Show that the vector $\overline{F}=3y^4z^2\overline{i}+4x^3z^2\overline{j}-3x^2y^2\overline{k}$ is solenoidal.
- 2. Define an irrotational vector.
- 3. State Green's theorem in the plane.
- 4. Define line integral.
- 5. State Gauss divergence theorem.
- 6. State Stoke's theorem.
- 7. Write down the Fourier sine transform of f(x).
- 8. Define the convolution of two functions in Fourier transform.
- 9. Define Z-transform of a sequence.
- 10. Find the Z-transform of a^{n+3} .
- 11. If $\phi = 3x^2yz$, find $grad \phi$ at the point (1,-2,-1).
- 12. Find the unit vector in the direction of the vector $\mathbf{i}+2\mathbf{j}+2\mathbf{k}$.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the directional derivative of x^2+y^2+4yzx at (1,-2,2) in the direction $2\overline{\mathbf{i}}-2\overline{\mathbf{j}}+\overline{\mathbf{k}}$.
- 14. If $\overline{A} = (3x^2 + 6y) \overline{i} + 14yz\overline{j} + 20xz^2\overline{k}$, evaluate $\int_C \overline{A}.d\overline{r}$ from (0,0,0) to (1,1,1) over the curve $x=t, y=t^2, z=t^3$ and \overline{r} is the position vector.
- 15. If $\overline{\mathbf{F}} = \mathbf{c}url\ \overline{\mathbf{A}}$, prove that $\int_{\mathbf{S}} \int \overline{\mathbf{F}}.\overline{\mathbf{n}} dS = \mathbf{0}$ for any closed surface S.
- 16. Prove that $F[f(x-a)] = e^{ias}F(s)$.
- 17. If $\mathbf{Z}(\mathbf{u_n}) = \overline{\mathbf{u}}(\mathbf{z})$, then prove that $\mathbf{Z}(\overline{\mathbf{a}}^{\mathbf{n}}\mathbf{u_n}) = \overline{\mathbf{u}}(\mathbf{a}z)$ and $\mathbf{Z}(\mathbf{a}^{\mathbf{n}}\mathbf{u_n}) = \overline{\mathbf{u}}(\frac{\mathbf{z}}{\mathbf{a}})$.
- 18. Find the unit vector normal to $\phi = \mathbf{x^2} \mathbf{y^2} + \mathbf{z^2}$ at the point $(\mathbf{1}, -\mathbf{1}, \mathbf{2})$.

19. Evaluate
$$\int_0^{\mathbf{a}} \int_0^{\mathbf{a}} \int_0^{\mathbf{a}} (4\mathbf{z} - \mathbf{y}) \, \mathbf{d}x dy dz$$
.

Section C
$$(3 \times 10 = 30)$$
 Marks

Answer any **THREE** questions

- 20. If $\phi = \mathbf{x^3} + \mathbf{y^3} + \mathbf{z^3} 3\mathbf{x}yz$, find $\mathbf{d}iv \ \mathbf{g}rad \ \phi$ and $\mathbf{c}url \ \mathbf{g}rad \ \phi$.
- 21. Evaluate using Green's theorem in the plane for $\int_{\mathbf{C}} (\mathbf{x}y + \mathbf{y^2}) dx + \mathbf{x^2} dy$ where C is the closed curve of the region bounded by $\mathbf{y} = \mathbf{x}$ and $\mathbf{y} = \mathbf{x^2}$.
- 22. Using Gauss divergence theorem, evaluate $\int_{S} \int x dy dz + y dz dx + z dx dy$ over the surface of the sphere $x^2 + y^2 + z^2 = a^2$.
- 23. Using Parseval's theorem, evaluate $\int_0^\infty \frac{\mathbf{x^2}}{\left(\mathbf{x^2} + \mathbf{a^2}\right)^2} \mathbf{d}x, \mathbf{a} > 0$.
- 24. Find the Z-transform of $\cos n\theta$ and $\sin n\theta$.

UMA/CT/4007

B.Sc. DEGREE EXAMINATION, APRIL 2019 II Year IV Semester VECTOR CALCULUS, FOURIER TRANSFORMS AND Z TRANSFORMS

Time: 3 Hours Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Show that the vector $\overline{F}=3y^4z^2\overline{i}+4x^3z^2\overline{j}-3x^2y^2\overline{k}$ is solenoidal.
- 2. Define an irrotational vector.
- 3. State Green's theorem in the plane.
- 4. Define line integral.
- 5. State Gauss divergence theorem.
- 6. State Stoke's theorem.
- 7. Write down the Fourier sine transform of f(x).
- 8. Define the convolution of two functions in Fourier transform.
- 9. Define Z-transform of a sequence.
- 10. Find the Z-transform of a^{n+3} .
- 11. If $\phi = 3x^2yz$, find $grad \phi$ at the point (1,-2,-1).
- 12. Find the unit vector in the direction of the vector $\mathbf{i}+2\mathbf{j}+2\mathbf{k}$.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the directional derivative of x^2+y^2+4yzx at (1,-2,2) in the direction $2\overline{\mathbf{i}}-2\overline{\mathbf{j}}+\overline{\mathbf{k}}$.
- 14. If $\overline{A} = (3x^2 + 6y) \overline{i} + 14yz\overline{j} + 20xz^2\overline{k}$, evaluate $\int_C \overline{A}.d\overline{r}$ from (0,0,0) to (1,1,1) over the curve $x=t, y=t^2, z=t^3$ and \overline{r} is the position vector.
- 15. If $\overline{\mathbf{F}} = \mathbf{c}url\ \overline{\mathbf{A}}$, prove that $\int_{\mathbf{S}} \int \overline{\mathbf{F}}.\overline{\mathbf{n}} dS = \mathbf{0}$ for any closed surface S.
- 16. Prove that $F[f(x-a)] = e^{ias}F(s)$.
- 17. If $\mathbf{Z}(\mathbf{u_n}) = \overline{\mathbf{u}}(\mathbf{z})$, then prove that $\mathbf{Z}(\overline{\mathbf{a}}^{\mathbf{n}}\mathbf{u_n}) = \overline{\mathbf{u}}(\mathbf{a}z)$ and $\mathbf{Z}(\mathbf{a}^{\mathbf{n}}\mathbf{u_n}) = \overline{\mathbf{u}}(\frac{\mathbf{z}}{\mathbf{a}})$.
- 18. Find the unit vector normal to $\phi = \mathbf{x^2} \mathbf{y^2} + \mathbf{z^2}$ at the point $(\mathbf{1}, -\mathbf{1}, \mathbf{2})$.

19. Evaluate
$$\int_0^{\mathbf{a}} \int_0^{\mathbf{a}} \int_0^{\mathbf{a}} (4\mathbf{z} - \mathbf{y}) \, \mathbf{d}x dy dz$$
.

Section C
$$(3 \times 10 = 30)$$
 Marks

Answer any **THREE** questions

- 20. If $\phi = \mathbf{x^3} + \mathbf{y^3} + \mathbf{z^3} 3\mathbf{x}yz$, find $\mathbf{d}iv \ \mathbf{g}rad \ \phi$ and $\mathbf{c}url \ \mathbf{g}rad \ \phi$.
- 21. Evaluate using Green's theorem in the plane for $\int_{\mathbf{C}} (\mathbf{x}y + \mathbf{y^2}) dx + \mathbf{x^2} dy$ where C is the closed curve of the region bounded by $\mathbf{y} = \mathbf{x}$ and $\mathbf{y} = \mathbf{x^2}$.
- 22. Using Gauss divergence theorem, evaluate $\int_{S} \int x dy dz + y dz dx + z dx dy$ over the surface of the sphere $x^2 + y^2 + z^2 = a^2$.
- 23. Using Parseval's theorem, evaluate $\int_0^\infty \frac{\mathbf{x^2}}{\left(\mathbf{x^2} + \mathbf{a^2}\right)^2} \mathbf{d}x, \mathbf{a} > 0$.
- 24. Find the Z-transform of $\cos n\theta$ and $\sin n\theta$.