B.Sc DEGREE EXAMINATION, APRIL 2019 III Year V Semester Real Analysis

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Find the l.u.b and g.l.b for the following set $\{\pi + 1, \pi + \frac{1}{2}, \pi + \frac{1}{3}, \dots\}$
- 2. Define convergent sequence.
- 3. Define bounded sequence.
- 4. Find the limit superior and inferior of 1,2,3,1,2,3,1,2,3,1,2, 3....
- 5. Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- 6. Prove that $\lim_{x\to 1} \frac{x^2 1}{x-1} = 2$
- 7. Define a metric space.
- 8. Define a open set.
- 9. If f(x)=x ; $0 \le x \le 1$ and $\sigma = \{0, \frac{1}{2}, 1\}$ compute U[f; σ]
- 10. State the Rolle's theorem.
- 11. When will you say f has a derivative at c?
- 12. State the first fundamental theorem of calculus.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. If The sequence of real number $\{{\sf S}_n\ \}_{n=1}^\infty$ is convergent . Then $\{{\sf S}_n\ \}_{n=1}^\infty$ is bounded
- 14. If $\sum_{n=1}^{\infty} a_n$ is a convergent series. Then $\lim_{n\to\infty} a_n = 0$.
- 15. Let R be the set of all real numbers. Let $d(x,y)=|x-y|,x,y \in R$. Prove that d is a metric space.
- 16. If G_1 and G_2 are open subset of the metric space M. Then $G_1 \cap G_2$ is also open.
- 17. Using the Rolle's theorem find the value of c f(x)=sinx $0 \le x \le \pi$.
- 18. Let f be a bounded function on [a,b]. Then prove that every upper sum for j is greater than or equal to every lower sum for f (i.e. if σ and τ are any two subdivision of [a,b], then prove that U[f; σ] \geq L[f; τ])
- 19. State and prove that The law of the mean.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. The Sequence $\{(1+\frac{1}{n})^n\}_{n=1}^{\infty}$ is convergent.
- 21. State and prove that the ratio test.
- 22. Let (M,ρ) be a metric space. Let f and g be real valued function defined on M and $a \in M$. Let $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$

(a) $\lim_{x\to a} [f(x) + g(x)] = L + M$ (b) $\lim_{x\to a} fg(x) = LM$

- 23. Prove that the set R' is of the second category.
- 24. State and prove that chain rule.

B.Sc DEGREE EXAMINATION, APRIL 2019 III Year V Semester Real Analysis

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Find the l.u.b and g.l.b for the following set $\{\pi + 1, \pi + \frac{1}{2}, \pi + \frac{1}{3}, \dots\}$
- 2. Define convergent sequence.
- 3. Define bounded sequence.
- 4. Find the limit superior and inferior of 1,2,3,1,2,3,1,2,3,1,2, 3....
- 5. Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- 6. Prove that $\lim_{x\to 1} \frac{x^2 1}{x-1} = 2$
- 7. Define a metric space.
- 8. Define a open set.
- 9. If f(x)=x ; $0 \le x \le 1$ and $\sigma = \{0, \frac{1}{2}, 1\}$ compute U[f; σ]
- 10. State the Rolle's theorem.
- 11. When will you say f has a derivative at c?
- 12. State the first fundamental theorem of calculus.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. If The sequence of real number $\{{\sf S}_n\ \}_{n=1}^\infty$ is convergent . Then $\{{\sf S}_n\ \}_{n=1}^\infty$ is bounded
- 14. If $\sum_{n=1}^{\infty} a_n$ is a convergent series. Then $\lim_{n\to\infty} a_n = 0$.
- 15. Let R be the set of all real numbers. Let $d(x,y)=|x-y|,x,y \in R$. Prove that d is a metric space.
- 16. If G_1 and G_2 are open subset of the metric space M. Then $G_1 \cap G_2$ is also open.
- 17. Using the Rolle's theorem find the value of c f(x)=sinx $0 \le x \le \pi$.
- 18. Let f be a bounded function on [a,b]. Then prove that every upper sum for j is greater than or equal to every lower sum for f (i.e. if σ and τ are any two subdivision of [a,b], then prove that U[f; σ] \geq L[f; τ])
- 19. State and prove that The law of the mean.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. The Sequence $\{(1+\frac{1}{n})^n\}_{n=1}^{\infty}$ is convergent.
- 21. State and prove that the ratio test.
- 22. Let (M,ρ) be a metric space. Let f and g be real valued function defined on M and $a \in M$. Let $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$

(a) $\lim_{x\to a} [f(x) + g(x)] = L + M$ (b) $\lim_{x\to a} fg(x) = LM$

- 23. Prove that the set R' is of the second category.
- 24. State and prove that chain rule.