B.Sc DEGREE EXAMINATION, APRIL 2019 I Year II Semester Allied Mathematics - II

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define countable set. Give an example.
- 2. State least upper bound axiom.
- 3. Find $\lim_{n \to \infty} \left(\frac{1}{n+2} \right)$
- 4. Define an alternating series and give one example.
- 5. If f and g both have derivative at ${\rm c}{\in}{\rm R}^1$, then prove that f+g also has a derivative at c.
- 6. State Taylor's theorem with Lagrange's form of remainder.
- 7. Prove that $L[e^{at}] = \frac{1}{s-a}$.
- 8. Find L[sin *at*].
- 9. Find the inverse transformation of $\frac{s+3}{(s+3)^2+9}$.
- 10. Find $L^{-1}\left[\frac{1}{s^2+1}\right]$.
- 11. State law of mean.
- 12. When are two function f and g said to be equal?

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

13. If $f : A \to B$ and if $X \subset B$, $Y \subset B$, then prove that $f^{-1}(X \bigcup Y) = f^{-1}(X) \bigcup f^{-1}(Y)$.

14. Prove that the series
$$\sum_{n=1}^{\infty} \left(\frac{1-n}{1+2n} \right)$$
 is diverges.

15. State and prove Rolle's theorem.

16. Find L
$$[t^3 + e^{-3t} + \cos 3t]$$
.
17. Find L⁻¹ $\left[\frac{s-2}{s^2+2s+2}\right]$.

UST/AT/2AM2

- 18. If L[f(t)] = F(s), prove that $L[f(at)] = \frac{1}{a}F\left(\frac{s}{a}\right)$.
- 19. If the sequence of real numbers $\{s_n\}_{n=1}^{\infty}$ is convergent, then prove that $\{s_n\}_{n=1}^{\infty}$ is bounded.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Prove that the set $[0, 1] = \{x \in \mathsf{R} : 0 \le x \le 1\}$ is uncountable.
- 21. Prove that the sequence $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}_{n=1}^{\infty}$ is convergent.
- 22. State and prove Taylor's formula with the integral form of remainder.
- 23. Find (a) $L[e^{2t} \sin 2t]$, (b) $L[\cos^2 t]$.

24. Find
$$L^{-1}\left[\frac{s^2-s+2}{s(s+2)(s-3)}\right]$$
.

B.Sc DEGREE EXAMINATION, APRIL 2019 I Year II Semester Allied Mathematics - II

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define countable set. Give an example.
- 2. State least upper bound axiom.
- 3. Find $\lim_{n \to \infty} \left(\frac{1}{n+2} \right)$
- 4. Define an alternating series and give one example.
- 5. If f and g both have derivative at ${\rm c}{\in}{\rm R}^1$, then prove that f+g also has a derivative at c.
- 6. State Taylor's theorem with Lagrange's form of remainder.
- 7. Prove that $L[e^{at}] = \frac{1}{s-a}$.
- 8. Find L[sin *at*].
- 9. Find the inverse transformation of $\frac{s+3}{(s+3)^2+9}$.
- 10. Find $L^{-1}\left[\frac{1}{s^2+1}\right]$.
- 11. State law of mean.
- 12. When are two function f and g said to be equal?

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

13. If $f : A \to B$ and if $X \subset B$, $Y \subset B$, then prove that $f^{-1}(X \bigcup Y) = f^{-1}(X) \bigcup f^{-1}(Y)$.

14. Prove that the series
$$\sum_{n=1}^{\infty} \left(\frac{1-n}{1+2n} \right)$$
 is diverges.

15. State and prove Rolle's theorem.

16. Find L
$$[t^3 + e^{-3t} + \cos 3t]$$
.
17. Find L⁻¹ $\left[\frac{s-2}{s^2+2s+2}\right]$.

UST/AT/2AM2

- 18. If L[f(t)] = F(s), prove that $L[f(at)] = \frac{1}{a}F\left(\frac{s}{a}\right)$.
- 19. If the sequence of real numbers $\{s_n\}_{n=1}^{\infty}$ is convergent, then prove that $\{s_n\}_{n=1}^{\infty}$ is bounded.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Prove that the set $[0, 1] = \{x \in \mathsf{R} : 0 \le x \le 1\}$ is uncountable.
- 21. Prove that the sequence $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}_{n=1}^{\infty}$ is convergent.
- 22. State and prove Taylor's formula with the integral form of remainder.
- 23. Find (a) $L[e^{2t} \sin 2t]$, (b) $L[\cos^2 t]$.

24. Find
$$L^{-1}\left[\frac{s^2-s+2}{s(s+2)(s-3)}\right]$$
.