B.Sc DEGREE EXAMINATION, APRIL 2019 I Year II Semester Allied Mathematics-II

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define Bisection method.
- 2. State Regula -Falsi formula.
- 3. Prove that $E = 1 + \Delta$.
- 4. State Newton's backward interpolation formula for equal intervals.
- 5. From the following table find f(0) using Newton's divided difference interpolation formula:

- 6. State Lagrange's inverse interpolation formula.
- 7. State Newton's backward difference formula to compute first and second derivatives.
- 8. What is Simpson's three-eighth formula ?
- 9. Find y(0.01) if $\frac{dy}{dx} = -y$, y(0) = 1 by Euler's method.
- 10. Write down the Runge-Kutta formula of fourth order to solve $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$.
- 11. Find the sixth term of the sequence 8, 12, 19, 29, 42, ...
- 12. Obtain the divided difference table for

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

13. Find the real root of the equation $x^3 - 10x - 5 = 0$ by iteration method 14. Find f(x) and f(0.5) of the following table

x: 0 1 2 3 4 5 6 f(x): -1 3 19 53 111 199 323

16UCSAT2MA2 UCS/AT/2MA2

- 15. From the following table find f(5) using Newton's interpolation formula.
- 16. Evaluate $\int_0^1 \frac{x^2}{1+x^3} dx$ using Simpson's one-third rule with h= 0.25.
- 17. Solve numerically $\frac{dy}{dx} = x + y$, y(0) = 1 for x = 0.2, 0.4, 0.6, 0.8, 1.0 by Euler's method.
- 18. Find the positive root of $x^3 5x + 3 = 0$ by Newton-Raphson method correct to three decimal places.
- 19. Using Taylor series method find y(1.1) given $\frac{dy}{dx} = x + y$, y(1) = 0.

Section C $(3 \times 10 = 30)$ Marks

Answer any THREE questions

- 20. Find a real root of the equation $x^3 5x 7 = 0$ using Regula-Falsi method.
- 21. Use Newton's formula for interpolation to find the net premium at age 25 from the table given below.

Age:20242832Annual Premium:0.014270.015810.017720.01996

22. Using Lagrange's interpolation formula, find the value of y when x=10 for following data.

x: 5 6 9 11 y: 12 13 14 16

23. Find the second derivatives of f(x) at x = 2.96 at by Newton's forward formula from the following data.

x:	2.94	2.96	2.98	3.00	3.02	3.04	3.06
f(x):	0.1826	0.1811	0.1797	0.1783	0.1769	0.1755	0.1742

24. Using Runge-Kutta method of fourth order, find y(0.8) correct to 4 decimal places if $\frac{dy}{dx} = y - x^2$, y(0.6) = 1.7379, taking h = 0.1

B.Sc DEGREE EXAMINATION, APRIL 2019 I Year II Semester Allied Mathematics-II

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define Bisection method.
- 2. State Regula -Falsi formula.
- 3. Prove that $E = 1 + \Delta$.
- 4. State Newton's backward interpolation formula for equal intervals.
- 5. From the following table find f(0) using Newton's divided difference interpolation formula:

- 6. State Lagrange's inverse interpolation formula.
- 7. State Newton's backward difference formula to compute first and second derivatives.
- 8. What is Simpson's three-eighth formula ?
- 9. Find y(0.01) if $\frac{dy}{dx} = -y$, y(0) = 1 by Euler's method.
- 10. Write down the Runge-Kutta formula of fourth order to solve $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$.
- 11. Find the sixth term of the sequence 8, 12, 19, 29, 42, ...
- 12. Obtain the divided difference table for

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

13. Find the real root of the equation $x^3 - 10x - 5 = 0$ by iteration method 14. Find f(x) and f(0.5) of the following table

x: 0 1 2 3 4 5 6 f(x): -1 3 19 53 111 199 323

16UCSAT2MA2 UCS/AT/2MA2

- 15. From the following table find f(5) using Newton's interpolation formula.
- 16. Evaluate $\int_0^1 \frac{x^2}{1+x^3} dx$ using Simpson's one-third rule with h= 0.25.
- 17. Solve numerically $\frac{dy}{dx} = x + y$, y(0) = 1 for x = 0.2, 0.4, 0.6, 0.8, 1.0 by Euler's method.
- 18. Find the positive root of $x^3 5x + 3 = 0$ by Newton-Raphson method correct to three decimal places.
- 19. Using Taylor series method find y(1.1) given $\frac{dy}{dx} = x + y$, y(1) = 0.

Section C $(3 \times 10 = 30)$ Marks

Answer any THREE questions

- 20. Find a real root of the equation $x^3 5x 7 = 0$ using Regula-Falsi method.
- 21. Use Newton's formula for interpolation to find the net premium at age 25 from the table given below.

Age:20242832Annual Premium:0.014270.015810.017720.01996

22. Using Lagrange's interpolation formula, find the value of y when x=10 for following data.

x: 5 6 9 11 y: 12 13 14 16

23. Find the second derivatives of f(x) at x = 2.96 at by Newton's forward formula from the following data.

x:	2.94	2.96	2.98	3.00	3.02	3.04	3.06
f(x):	0.1826	0.1811	0.1797	0.1783	0.1769	0.1755	0.1742

24. Using Runge-Kutta method of fourth order, find y(0.8) correct to 4 decimal places if $\frac{dy}{dx} = y - x^2$, y(0.6) = 1.7379, taking h = 0.1