B.Com(A&F) DEGREE EXAMINATION, APRIL 2019 I Year II Semester Operations Research

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define operations research.
- 2. What is objective function?
- 3. What is transportation problem?
- 4. Define feasible solution for transportation problem.
- 5. Find the transportation using North West Corner rule.

				Demand
	2	7	4	5
	3	3	1	8
	5	4	7	7
	1	6	2	14
Supply	7	9	18	

- 6. What is Assignment problem?
- 7. What is unbalanced assignment problem?
- 8. Write mathematical formulation of an assignment problem.
- 9. What is project?
- 10. Draw a network, for the following data

Activity	Time weeks	in
1-2	4	
1-3	2	
1-4	10	
2-5	12	
3-5	6	
2-6	12	
5-6	9	
4-6	8	

- 11. Write any three basic characteristic of a queuing system.
- 12. What is FIFO?

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Write the scope of operations research.
- 14. Solve the following LPP using graphical method

Maximize $z = 5x_1 + 3x_2$

Subject to $3x_1 + 5x_2 \le 15$

 $5x_1 + 2x_2 \le 10 \text{ and } x_1, \ x_2 \ge 0.$

15. Find the initial basic solution of the following transportation least cost method.

				Supply
	6	1	2	10
	4	3	0	8
	5	7	9	2
	4	2	1	5
Demand	10	12	3	

16. A project has the following characteristics

MEN

		1	2	3
	А	9	26	15
TASKS	В	13	27	6
	С	35	20	15
	D	18	30	20

Activity	Duration(Weeks)	Predecessors
A	6	None
В	8	A
С	4	A
D	9	В
E	2	С
F	7	D

Construct the network and compute the critical path and project duration.

17. Find the optimal assignment cost.

		1	2	3	4	5	
A	(13	8	16	$\frac{18}{9}$	19	
B		9	15	24	9	12	
C		12	9	4	4	4	
D				10		13	
E		15	17	18	12	20	Ϊ

17UAFAT2OR2

18. Draw the critical path and find the total duration of the project is given by

Activity	1-2	2-3	3-4	3-7	4-5	4-7	5-6	6-7
Duration(days)	3	4	4	4	2	2	3	2

- 19. In a public telephone booth the arrivals are on the average 15/hour. A call on the average takes 3 min. If there is just one phone find,
 - i. Expected number of callers in the booth at any time.
 - ii. The proportion of the time the booth is expected to be idle.

Section C $(2 \times 15 = 30)$ Marks

Answer any **TWO** questions

20. Use simplex method to solve the LPP

Maximize $z = 4x_1 + 10x_2$

Subject to $2x_1 + x_2 \leq 50$

 $2x_1 + 5x_2 \le 100$

 $2x_1 + 3x_2 \le 90$

and $x_1, x_2 \ge 0$.

21. Find the optimal transportation cost.

				Demand
	5	1	7	10
	6	4	6	80
	2	1	5	15
Supply	45	20	40	

22. Solve the assignment problem.

23. The utility data for a network is given below. Determine the total, free, independent floats and identify the critical path.

Activity	Duration
0-1	2
1-2	8
1-3	10

17UAFAT2OR2

2-4	6
2-5	3
3-4	3
3-6	7
4-7	5
5-7	2
6-7	8