B.Sc. DEGREE EXAMINATION, NOVEMBER 2019 I Year II Semester Allied Mathematics - II

Time: 3 Hours Max.marks: 75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. State Dirichlet's conditions.
- 2. Find a_0 for the Fourier series of the function $f(x) = x^3$ in $-\pi < x < \pi$.
- 3. Form the Partial differential equation by eliminating the arbitrary constants a and b from the equation z = (x a)(y b).
- 4. Solve : p + q = x + y.
- 5. Find $L[e^{-t}(t^2+1)]$
- 6. Find $L[\sin at]$
- 7. Find $L^{-1}[\frac{1}{(s-2)^4}]$.
- 8. Find the inverse laplace transform of $\frac{1}{(s+4)^2+9}$
- 9. If $\overrightarrow{r} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$ then prove that curl $\overrightarrow{r} = 0$.
- 10. Show that the vector $3x^2y$ $\overrightarrow{i} 4xy^2\overrightarrow{j} + 2xyz\overrightarrow{k}$ is solenoidal.
- 11. State Green's theorem.
- 12. Solve $:px^2 + qy^2 = z^2$.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the Fourier series for the function (x) = |x| , $-\pi < x < \pi$.
- 14. Form the Partial differential equation by eliminating the arbitrary function from z = xf(x+y) + g(x+y).
- 15. State and prove change of scale property.
- 16. Find $L^{-1} \left[\frac{s+2}{(s^2+1)(s-4)} \right]$.
- 17. Find the directional derivative of the function $xyz-xy^2z^3$ at the point (1,2,-1) in the direction of the vector $\overrightarrow{i}-\overrightarrow{j}-3\overrightarrow{k}$.
- 18. Find ϕ if $\nabla \phi = (y + sinz) \overrightarrow{i} + x \overrightarrow{j} + xcosz \overrightarrow{k}$
- 19. Find the complete solution of $8z = p^3 + q^3$.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Obtain a Fourier series for the function $f\left(x\right) = x + x^2 \;, -\pi < x < \pi$
- 21. Solve $:x(z^2-y^2)p+y(x^2-z^2)q=z(y^2-x^2).$
- 22. (i) Find $L\left[\begin{array}{c} e^{-at}-e^{-bt} \\ t \end{array}\right]$
 - (ii) Find L [$t^2 cost$].
- 23. Find $L^{-1} \left[\frac{7s-1}{(s+1)(s+2)(s+3)} \right]$.
- 24. Verify Green's theorem for $\int_C \left(3x^2-8y^2\right)dx+(4y-6xy)dy$ where C is the boundary of the region defined by $x^2=y$ and $x=y^2$.

B.Sc. DEGREE EXAMINATION, NOVEMBER 2019 I Year II Semester Allied Mathematics - II

Time: 3 Hours Max.marks: 75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. State Dirichlet's conditions.
- 2. Find a_0 for the Fourier series of the function $f(x) = x^3$ in $-\pi < x < \pi$.
- 3. Form the Partial differential equation by eliminating the arbitrary constants a and b from the equation z = (x a)(y b).
- 4. Solve : p + q = x + y.
- 5. Find $L[e^{-t}(t^2+1)]$
- 6. Find $L[\sin at]$
- 7. Find $L^{-1}[\frac{1}{(s-2)^4}]$.
- 8. Find the inverse laplace transform of $\frac{1}{(s+4)^2+9}$
- 9. If $\overrightarrow{r} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$ then prove that curl $\overrightarrow{r} = 0$.
- 10. Show that the vector $3x^2y$ $\overrightarrow{i} 4xy^2\overrightarrow{j} + 2xyz\overrightarrow{k}$ is solenoidal.
- 11. State Green's theorem.
- 12. Solve $:px^2 + qy^2 = z^2$.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the Fourier series for the function (x) = |x| , $-\pi < x < \pi$.
- 14. Form the Partial differential equation by eliminating the arbitrary function from z = xf(x+y) + g(x+y).
- 15. State and prove change of scale property.
- 16. Find $L^{-1} \left[\frac{s+2}{(s^2+1)(s-4)} \right]$.
- 17. Find the directional derivative of the function $xyz-xy^2z^3$ at the point (1,2,-1) in the direction of the vector $\overrightarrow{i}-\overrightarrow{j}-3\overrightarrow{k}$.
- 18. Find ϕ if $\nabla \phi = (y + sinz) \overrightarrow{i} + x \overrightarrow{j} + xcosz \overrightarrow{k}$
- 19. Find the complete solution of $8z = p^3 + q^3$.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Obtain a Fourier series for the function $f\left(x\right) = x + x^2 \;, -\pi < x < \pi$
- 21. Solve $:x(z^2-y^2)p+y(x^2-z^2)q=z(y^2-x^2).$
- 22. (i) Find $L\left[\begin{array}{c} e^{-at}-e^{-bt} \\ t \end{array}\right]$
 - (ii) Find L [$t^2 cost$].
- 23. Find $L^{-1} \left[\frac{7s-1}{(s+1)(s+2)(s+3)} \right]$.
- 24. Verify Green's theorem for $\int_C \left(3x^2-8y^2\right)dx+(4y-6xy)dy$ where C is the boundary of the region defined by $x^2=y$ and $x=y^2$.