B.Sc. DEGREE EXAMINATION,NOVEMBER 2019 I Year II Semester Allied Mathematics - II

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define countable set. Give an example.
- 2. If f(x) = |x|, and g(x) = |5x 2|, find $f \circ g$ and $g \circ f$.
- 3. Find $\lim_{n \to \infty} \left(\frac{3n^2 6n}{5n^2 + 4} \right)$.
- 4. Prove that the series $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)$ is divergent.
- 5. State law of mean.

6. Verify Rolle's theorem for the function $f(x) = x^2 + 2$, a = -2 and b = 2.

- 7. Prove that $L[1] = \frac{1}{s}$
- 8. Find L[cosh 4*t*].

9. Find the inverse Laplace transformation of $\frac{s}{(s+1)^2+4}$.

- 10. What is the value of L $^{-1}$ [f (s a)].
- 11. Define Convergence series.
- 12. Find L[e $^{-3t}$ cos 3t].

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. If $f : A \to B$ and if $X \subset A$, $Y \subset A$, then prove that $f(X \bigcup Y) = f(X) \bigcup f(Y)$.
- 14. Prove that if the sequence of real number $\{s_n\}_{n=1}^{\infty}$ is convergent, then $\{s_n\}_{n=1}^{\infty}$ is bounded.
- 15. State and prove Rolle's theorem.
- 16. Find L [$t^2 \cos 3t$].
- 17. Find $L^{-1}\left[\frac{s+2}{(s^2+4s+5)^2}\right]$.

16USTAT2MA2 UST/AT/2MA2

18. Find the inverse Laplace transformation of $\log\left(\frac{s^2+1}{s(s+1)}\right)$.

19. Prove that the set of all rational number is countable.

Section C
$$(3 \times 10 = 30)$$
 Marks

Answer any THREE questions

- 20. Prove that the set $[0, 1] = \{x \in \mathsf{R} : 0 \le x \le 1\}$ is uncountable.
- 21. Prove that if $\{a_n\}_{n=1}^{\infty}$ is a sequence of positive number such that (a) $a_1 \ge a_2 \ge \dots$ $a_n \ge a_{n+1} \ge \dots$ and (b) $\lim_{n \to \infty} a_n = 0$, then alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ is convergent.
- 22. State and prove Taylor's formula with the integral form of remainder.
- 23. Find (a) $L\left[\frac{e^{-3t}\sin 2t}{t}\right]$, (b) If L[f(t)] = F(s), then prove that $L[f(at)] = \frac{1}{a}F\left(\frac{s}{a}\right)$. 24. Find $L^{-1}\left[\frac{5s+3}{(s-1)(s^2+2s+5)}\right]$.

B.Sc. DEGREE EXAMINATION,NOVEMBER 2019 I Year II Semester Allied Mathematics - II

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define countable set. Give an example.
- 2. If f(x) = |x|, and g(x) = |5x 2|, find $f \circ g$ and $g \circ f$.
- 3. Find $\lim_{n \to \infty} \left(\frac{3n^2 6n}{5n^2 + 4} \right)$.
- 4. Prove that the series $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)$ is divergent.
- 5. State law of mean.

6. Verify Rolle's theorem for the function $f(x) = x^2 + 2$, a = -2 and b = 2.

- 7. Prove that $L[1] = \frac{1}{s}$
- 8. Find L[cosh 4*t*].

9. Find the inverse Laplace transformation of $\frac{s}{(s+1)^2+4}$.

- 10. What is the value of L $^{-1}$ [f (s a)].
- 11. Define Convergence series.
- 12. Find L[e $^{-3t}$ cos 3t].

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. If $f : A \to B$ and if $X \subset A$, $Y \subset A$, then prove that $f(X \bigcup Y) = f(X) \bigcup f(Y)$.
- 14. Prove that if the sequence of real number $\{s_n\}_{n=1}^{\infty}$ is convergent, then $\{s_n\}_{n=1}^{\infty}$ is bounded.
- 15. State and prove Rolle's theorem.
- 16. Find L [$t^2 \cos 3t$].
- 17. Find $L^{-1}\left[\frac{s+2}{(s^2+4s+5)^2}\right]$.

16USTAT2MA2 UST/AT/2MA2

18. Find the inverse Laplace transformation of $\log\left(\frac{s^2+1}{s(s+1)}\right)$.

19. Prove that the set of all rational number is countable.

Section C
$$(3 \times 10 = 30)$$
 Marks

Answer any THREE questions

- 20. Prove that the set $[0, 1] = \{x \in \mathsf{R} : 0 \le x \le 1\}$ is uncountable.
- 21. Prove that if $\{a_n\}_{n=1}^{\infty}$ is a sequence of positive number such that (a) $a_1 \ge a_2 \ge \dots$ $a_n \ge a_{n+1} \ge \dots$ and (b) $\lim_{n \to \infty} a_n = 0$, then alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ is convergent.
- 22. State and prove Taylor's formula with the integral form of remainder.
- 23. Find (a) $L\left[\frac{e^{-3t}\sin 2t}{t}\right]$, (b) If L[f(t)] = F(s), then prove that $L[f(at)] = \frac{1}{a}F\left(\frac{s}{a}\right)$. 24. Find $L^{-1}\left[\frac{5s+3}{(s-1)(s^2+2s+5)}\right]$.