M.Sc. DEGREE EXAMINATION, NOVEMBER 2019 II Year III Semester Complex Analysis

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

1. Find the zeros of
$$f(z) = cos\left(\frac{1+z}{1-z}\right), |z| < 1.$$

- 2. Define starshaped set.
- 3. State open mapping theorem.
- 4. Find the poles of $\mathbf{f}(\mathbf{z}) = (\mathbf{1} \mathbf{e}^{\mathbf{z}})^{-1}$.
- 5. Define meromorphic function.
- 6. Define infinite product of sequence of complex numbers.

7. Prove that
$$\lim_{z\to 0} \frac{\log(1+z)}{z} = 1$$
.

- 8. Prove $\Gamma(\mathbf{z+1}) = \mathbf{z}\Gamma(\mathbf{z})$.
- 9. State mean value property.
- 10. Define Green's function.
- 11. Write Poisson-Jenson formula.
- 12. Define Landau's constant.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. State and prove fundamental theorem of algebra.
- 14. If G is simply connected and $f: G \to C$ is analytic then prove that f has a primitive in G.
- 15. State and prove Casorati-Weierstrass theorem.
- 16. If $|\mathbf{z}| \leq 1$ and $\mathbf{p} > \mathbf{0}$ prove that $|\mathbf{1} \mathbf{E}_{\mathbf{p}}(\mathbf{z})| \leq |\mathbf{z}|^{\mathbf{p}+1}$.
- 17. Prove that $\{\left(1+\frac{z}{n}\right)^n\}$ convegers to e^z in H(C).
- 18. Let G be a region and suppose that u is a continuous real valued function on G with the MVP. If there is a appoint a in G such that $\mathbf{u}(\mathbf{a}) \ge \mathbf{u}(\mathbf{z})$ for all $\mathbf{z} \in \mathbf{G}$, prove that u is a constant function.

14PAMCT3A07 PAM/CT/3A07

19. Let f be an entire function of finite order, then prove that f assumes each complex number with one possible exception.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

20. Let G be an open set and let $f: G \to C$ be a differentiable function prove that f is analytic on G.

21. Show that
$$\int_0^\infty \frac{\mathbf{x}^{-\mathbf{c}}}{1+\mathbf{x}} dx = \frac{\pi}{\sin \pi \mathbf{C}}$$
, if $0 < \mathbf{c} < 1$.

- 22. Let G be a region which is not the whole plane and such that every non-vanishing analytic function on G has an analytic square root. If $a \in G$ prove that there is an analytic function f on G such that
 - (i) f(a) = 0 and f'(a) > 0;
 - (ii) **f** is one-one;
 - (iii) $f(G) = D = \{z: |z| < 1\}.$
- 23. State and prove Harnack's theorem.
- 24. If f is an entire function of finite order λ , then prove that f has finite genus $\mu \leq \lambda$.

M.Sc. DEGREE EXAMINATION, NOVEMBER 2019 II Year III Semester Complex Analysis

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

1. Find the zeros of
$$f(z) = cos\left(\frac{1+z}{1-z}\right), |z| < 1.$$

- 2. Define starshaped set.
- 3. State open mapping theorem.
- 4. Find the poles of $\mathbf{f}(\mathbf{z}) = (\mathbf{1} \mathbf{e}^{\mathbf{z}})^{-1}$.
- 5. Define meromorphic function.
- 6. Define infinite product of sequence of complex numbers.

7. Prove that
$$\lim_{z\to 0} \frac{\log(1+z)}{z} = 1$$
.

- 8. Prove $\Gamma(\mathbf{z+1}) = \mathbf{z}\Gamma(\mathbf{z})$.
- 9. State mean value property.
- 10. Define Green's function.
- 11. Write Poisson-Jenson formula.
- 12. Define Landau's constant.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. State and prove fundamental theorem of algebra.
- 14. If G is simply connected and $f: G \to C$ is analytic then prove that f has a primitive in G.
- 15. State and prove Casorati-Weierstrass theorem.
- 16. If $|\mathbf{z}| \leq 1$ and $\mathbf{p} > \mathbf{0}$ prove that $|\mathbf{1} \mathbf{E}_{\mathbf{p}}(\mathbf{z})| \leq |\mathbf{z}|^{\mathbf{p}+1}$.
- 17. Prove that $\{\left(1+\frac{z}{n}\right)^n\}$ convegers to e^z in H(C).
- 18. Let G be a region and suppose that u is a continuous real valued function on G with the MVP. If there is a appoint a in G such that $\mathbf{u}(\mathbf{a}) \ge \mathbf{u}(\mathbf{z})$ for all $\mathbf{z} \in \mathbf{G}$, prove that u is a constant function.

14PAMCT3A07 PAM/CT/3A07

19. Let f be an entire function of finite order, then prove that f assumes each complex number with one possible exception.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

20. Let G be an open set and let $f: G \to C$ be a differentiable function prove that f is analytic on G.

21. Show that
$$\int_0^\infty \frac{\mathbf{x}^{-\mathbf{c}}}{1+\mathbf{x}} dx = \frac{\pi}{\sin \pi \mathbf{C}}$$
, if $0 < \mathbf{c} < 1$.

- 22. Let G be a region which is not the whole plane and such that every non-vanishing analytic function on G has an analytic square root. If $a \in G$ prove that there is an analytic function f on G such that
 - (i) f(a) = 0 and f'(a) > 0;
 - (ii) **f** is one-one;
 - (iii) $f(G) = D = \{z: |z| < 1\}.$
- 23. State and prove Harnack's theorem.
- 24. If f is an entire function of finite order λ , then prove that f has finite genus $\mu \leq \lambda$.