M.Sc. DEGREE EXAMINATION,NOVEMBER 2019 I Year I Semester Statistical Inference - I

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define point estimation.
- 2. What do you mean by MVUE?
- 3. What is sufficient statistic?
- 4. Define invariance.
- 5. State Lehmann –Scheffe theorem
- 6. Give any two properties of MLE
- 7. What is censoring?
- 8. Define random censoring.
- 9. Define confidence coefficient.
- 10. Write the $100(1-\alpha)$ % confidence interval for difference between two sample means for large samples.
- 11. List any two types of prior distribution.
- 12. What is Baye's estimator?

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Prove that the sample mean from N(μ , σ^2)is consistent for μ
- 14. Prove that the minimum variance unbiased estimator is unique
- 15. Describe briefly about completeness and boundedly complete of a statistic
- 16. If $X_1, X_2, ..., X_n$ be independent random observations on a random variable X whose distribution is B(1, θ), 0 < θ <1, the prove that $T = \sum X_i$ is sufficient for θ and complete
- 17. Estimate the parameter of one parameter exponential distribution by MLE
- 18. Explain briefly about method of minimum chi square
- 19. Obtain $100(1-\alpha)$ % confidence interval for ratio of two variances

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. State and prove Cramer Rao inequality
- 21. State and prove Rao-Blackwell theorem
- 22. Explain type I and type II censoring with examples
- 23. Obtain the confidence interval for Poisson distribution with parameter θ .
- 24. Find the posterior distribution of μ from N(μ , σ^2)where σ^2 is known

M.Sc. DEGREE EXAMINATION,NOVEMBER 2019 I Year I Semester Statistical Inference - I

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define point estimation.
- 2. What do you mean by MVUE?
- 3. What is sufficient statistic?
- 4. Define invariance.
- 5. State Lehmann –Scheffe theorem
- 6. Give any two properties of MLE
- 7. What is censoring?
- 8. Define random censoring.
- 9. Define confidence coefficient.
- 10. Write the $100(1-\alpha)$ % confidence interval for difference between two sample means for large samples.
- 11. List any two types of prior distribution.
- 12. What is Baye's estimator?

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Prove that the sample mean from N(μ , σ^2)is consistent for μ
- 14. Prove that the minimum variance unbiased estimator is unique
- 15. Describe briefly about completeness and boundedly complete of a statistic
- 16. If $X_1, X_2, ..., X_n$ be independent random observations on a random variable X whose distribution is B(1, θ), 0 < θ <1, the prove that $T = \sum X_i$ is sufficient for θ and complete
- 17. Estimate the parameter of one parameter exponential distribution by MLE
- 18. Explain briefly about method of minimum chi square
- 19. Obtain $100(1-\alpha)$ % confidence interval for ratio of two variances

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. State and prove Cramer Rao inequality
- 21. State and prove Rao-Blackwell theorem
- 22. Explain type I and type II censoring with examples
- 23. Obtain the confidence interval for Poisson distribution with parameter θ .
- 24. Find the posterior distribution of μ from N(μ , σ^2)where σ^2 is known