B.Sc. DEGREE EXAMINATION, NOVEMBER 2019 I Year I Semester Differential Calculus

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

1. Find the nth differential coefficient of log(ax+b).

2. Find
$$\frac{du}{dx}$$
 when $u = x^2 + y^2$ where $y = \frac{1-x}{x}$

3. If
$$x = r\cos\theta$$
 and $y = r\sin\theta$ find $\frac{\partial(u, v)}{\partial(r, \theta)}$.

- 4. Define the Jacobian.
- 5. Fine the radius of the curvature of the curve $\sqrt{x} + \sqrt{y} = 1$ at $(\frac{1}{4}, \frac{1}{4})$.
- 6. Find the radius of curvatures for the curves $y = e^x$ at the point where it crosses the y axis.
- 7. Find the P –r equation of the curve $r = a \sin \theta$.
- 8. Define critical points.
- 9. Define asymptotes to the curve.
- 10. Prove that the asymptotes of $x^2y^2 = c^2(x^2+y^2)$ are the side of a square.
- 11. Write down the Leibinitz's formula.
- 12. Find Cartesian formula for the radius of curvature.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

13. If $x = \sin\theta$; $y = \cos p\theta$, prove that $(1 - x^2)y_2 - xy_1 + p^2y = 0$

14. If u = xyz and v = xy+ yz + zx and w = x+y+z find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.

- 15. Prove that the radius of curvature at any point of the cycloid x = a(t + sint)and y = a(1 - cost) is $4a \cos \frac{t}{2}$
- 16. Find the asymptotes of the curve $y^3 6xy^2 + 11x^2y 6x^3 + x + y = 0$.
- 17. Find the rectilinear asymptotes of $8x^2 + 10xy 3y^2 2x + 4y 2 = 0$.
- 18. Find the asymptotes of (x + y)(x 2y 4)(x y) = 3x + 7y 6.

16UMACT1A02 UMA/CT/1A02

19. Find the nth derivative of $\frac{2x+1}{(2x-1)(2x+2)}$.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. If y = acos (logx) +bsin (logx) prove that x^2y_{n+2} + (2n+1) xy_{n+1} + (n²+1) y_n = 0.
- 21. Show that the maximum value of $x^2y^2z^2$ subject to the constraints $x^2+y^2+z^2 = a^2$ is $(a^2/3)^{3}$.
- 22. Find the radius of curvature of the curve $r^n = a^n cos \ n\theta$.
- 23. Find the radius of curvature of the curve $r^2 = a^2 \sin 2\theta$.
- 24. Determine the asymptotes of the curve $4(x^4+y^4) 17x^2y^2 4x (4y^2-x^2) + 2(x^2-2) = 0$ and show that they pass through the point of intersection of the curve with the ellipse $x^2+4y^2 = 4$.

B.Sc. DEGREE EXAMINATION, NOVEMBER 2019 I Year I Semester Differential Calculus

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

1. Find the nth differential coefficient of log(ax+b).

2. Find
$$\frac{du}{dx}$$
 when $u = x^2 + y^2$ where $y = \frac{1-x}{x}$

3. If
$$x = r\cos\theta$$
 and $y = r\sin\theta$ find $\frac{\partial(u, v)}{\partial(r, \theta)}$.

- 4. Define the Jacobian.
- 5. Fine the radius of the curvature of the curve $\sqrt{x} + \sqrt{y} = 1$ at $(\frac{1}{4}, \frac{1}{4})$.
- 6. Find the radius of curvatures for the curves $y = e^x$ at the point where it crosses the y axis.
- 7. Find the P –r equation of the curve $r = a \sin \theta$.
- 8. Define critical points.
- 9. Define asymptotes to the curve.
- 10. Prove that the asymptotes of $x^2y^2 = c^2(x^2+y^2)$ are the side of a square.
- 11. Write down the Leibinitz's formula.
- 12. Find Cartesian formula for the radius of curvature.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

13. If $x = \sin\theta$; $y = \cos p\theta$, prove that $(1 - x^2)y_2 - xy_1 + p^2y = 0$

14. If u = xyz and v = xy+ yz + zx and w = x+y+z find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.

- 15. Prove that the radius of curvature at any point of the cycloid x = a(t + sint)and y = a(1 - cost) is $4a \cos \frac{t}{2}$
- 16. Find the asymptotes of the curve $y^3 6xy^2 + 11x^2y 6x^3 + x + y = 0$.
- 17. Find the rectilinear asymptotes of $8x^2 + 10xy 3y^2 2x + 4y 2 = 0$.
- 18. Find the asymptotes of (x + y)(x 2y 4)(x y) = 3x + 7y 6.

16UMACT1A02 UMA/CT/1A02

19. Find the nth derivative of $\frac{2x+1}{(2x-1)(2x+2)}$.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. If y = acos (logx) +bsin (logx) prove that x^2y_{n+2} + (2n+1) xy_{n+1} + (n²+1) y_n = 0.
- 21. Show that the maximum value of $x^2y^2z^2$ subject to the constraints $x^2+y^2+z^2 = a^2$ is $(a^2/3)^{3}$.
- 22. Find the radius of curvature of the curve $r^n = a^n cos \ n\theta$.
- 23. Find the radius of curvature of the curve $r^2 = a^2 \sin 2\theta$.
- 24. Determine the asymptotes of the curve $4(x^4+y^4) 17x^2y^2 4x (4y^2-x^2) + 2(x^2-2) = 0$ and show that they pass through the point of intersection of the curve with the ellipse $x^2+4y^2 = 4$.