B.Sc. DEGREE EXAMINATION, NOVEMBER 2019 I Year II Semester Integral Calculus and Fourier Series

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Evaluate $\int x^2 \sin x \, dx$
- 2. Evaluate $\int x^3 e^{-2x} dx$
- 3. Define double integral

4. Evaluate
$$\int_0^a \int_0^b \left(x^2 + y^2\right) dx \, dy$$

- 5. Evaluate $\int_0^2 \sin^7\theta \ \cos^5 d\theta$
- 6. State any two properties of Beta functions
- 7. Find the constant a_0 of the Fourier series for the function $f\left(x\right)=k$ in $0\leq x\leq 2\pi$
- 8. Find the Fourier constants b_n for $x \sin x$ in $(-\pi, \pi)$
- 9. Find a sine series for f(x) = c in the range 0 to π .
- 10. If $f(x) = x^2$ in $-\pi \le x \le \pi$, find the value a_0 of the fourier series.
- 11. Evaluate $\int_0^\infty e^{-x^2} dx$
- 12. Define triple integral

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Evaluate $\int e^x \sin 3x \cos 2x \, dx$ 14. Evaluate $\iint (x^2 + y^2) \, dx \, dy$ over the region for which x, y are each ≥ 0 and $x + y \le 1$
- 15. If n > 0, prove that $\Gamma(n + 1) = n \Gamma(n)$
- 16. Find the Fourier series to represent $x-\pi$ in the interval $(-\pi,\ \pi)$

16UMACT2A04 UMA/CT/2A04

- 17. Find a Fourier series with period 3 to represent $f(x) = 2x x^3$ in the range (0,3)
- 18. Find a sine series for

$$f(x) = \begin{cases} x & when \ 0 < x < \frac{\pi}{2} \\ 0 & when \ \frac{\pi}{2} < x < \pi \end{cases}$$
19. Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

20. If $I_{m,n} = \int x^m (\log x)^n dx$ (where m and n are positive integers), show that $I_{m,n} = (\log x)^n \frac{x^{m+1}}{m+1} - \frac{n}{m+1} I_{m,n-1}$. Hence find $\int x^4 (\log x)^3 dx$ 21. Evaluate $\iiint_V (x+y+z) dx dy dz$, where the region V is bounded by $x + \frac{1}{2} \int \int_V (x+y+z) dx dy dz$, where the region V is bounded by $x + \frac{1}{2} \int \int_V (x+y+z) dx dy dz$, where the region V is bounded by $x + \frac{1}{2} \int \int_V (x+y+z) dx dy dz$, where the region V is bounded by $x + \frac{1}{2} \int \int_V (x+y+z) dx dy dz$, where the region V is bounded by $x + \frac{1}{2} \int \int_V (x+y+z) dx dy dz$.

- 21. Evaluate $\iiint_V (x + y + z) \ dx \ dy \ dz$, where the region V is bounded by $x + y + z = a \ (a > 0)$, $x = 0, \ y = 0, \ z = 0.$
- 22. Express $\int_0^1 x^m (1-x^n)^p dx$ in terms of Gamma functions and evaluate the integral $\int_0^1 x^5 (1-x^3)^{10} dx$
- 23. Show that $x^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$ in the interval $(-\pi \le x \le \pi)$
- 24. If the function y=x in the range 0 to π is expanded as a sine series, show that it is equal to $2\left(\frac{\sin x}{1} \frac{\sin 2x}{2} + \frac{\sin 3x}{3} \dots\right)$

B.Sc. DEGREE EXAMINATION, NOVEMBER 2019 I Year II Semester Integral Calculus and Fourier Series

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Evaluate $\int x^2 \sin x \, dx$
- 2. Evaluate $\int x^3 e^{-2x} dx$
- 3. Define double integral

4. Evaluate
$$\int_0^a \int_0^b \left(x^2 + y^2\right) dx \, dy$$

- 5. Evaluate $\int_0^2 \sin^7\theta \ \cos^5 d\theta$
- 6. State any two properties of Beta functions
- 7. Find the constant a_0 of the Fourier series for the function $f\left(x\right)=k$ in $0\leq x\leq 2\pi$
- 8. Find the Fourier constants b_n for $x \sin x$ in $(-\pi, \pi)$
- 9. Find a sine series for f(x) = c in the range 0 to π .
- 10. If $f(x) = x^2$ in $-\pi \le x \le \pi$, find the value a_0 of the fourier series.
- 11. Evaluate $\int_0^\infty e^{-x^2} dx$
- 12. Define triple integral

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Evaluate $\int e^x \sin 3x \cos 2x \, dx$ 14. Evaluate $\iint (x^2 + y^2) \, dx \, dy$ over the region for which x, y are each ≥ 0 and $x + y \le 1$
- 15. If n > 0, prove that $\Gamma(n + 1) = n \Gamma(n)$
- 16. Find the Fourier series to represent $x-\pi$ in the interval $(-\pi,\ \pi)$

16UMACT2A04 UMA/CT/2A04

- 17. Find a Fourier series with period 3 to represent $f(x) = 2x x^3$ in the range (0,3)
- 18. Find a sine series for

$$f(x) = \begin{cases} x & when \ 0 < x < \frac{\pi}{2} \\ 0 & when \ \frac{\pi}{2} < x < \pi \end{cases}$$
19. Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

20. If $I_{m,n} = \int x^m (\log x)^n dx$ (where m and n are positive integers), show that $I_{m,n} = (\log x)^n \frac{x^{m+1}}{m+1} - \frac{n}{m+1} I_{m,n-1}$. Hence find $\int x^4 (\log x)^3 dx$ 21. Evaluate $\iiint_V (x+y+z) dx dy dz$, where the region V is bounded by $x + \frac{1}{2} \int \int_V (x+y+z) dx dy dz$, where the region V is bounded by $x + \frac{1}{2} \int \int_V (x+y+z) dx dy dz$, where the region V is bounded by $x + \frac{1}{2} \int \int_V (x+y+z) dx dy dz$, where the region V is bounded by $x + \frac{1}{2} \int \int_V (x+y+z) dx dy dz$, where the region V is bounded by $x + \frac{1}{2} \int \int_V (x+y+z) dx dy dz$.

- 21. Evaluate $\iiint_V (x + y + z) \ dx \ dy \ dz$, where the region V is bounded by $x + y + z = a \ (a > 0)$, $x = 0, \ y = 0, \ z = 0.$
- 22. Express $\int_0^1 x^m (1-x^n)^p dx$ in terms of Gamma functions and evaluate the integral $\int_0^1 x^5 (1-x^3)^{10} dx$
- 23. Show that $x^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$ in the interval $(-\pi \le x \le \pi)$
- 24. If the function y=x in the range 0 to π is expanded as a sine series, show that it is equal to $2\left(\frac{\sin x}{1} \frac{\sin 2x}{2} + \frac{\sin 3x}{3} \dots\right)$