B.Sc. DEGREE EXAMINATION,NOVEMBER 2019 III Year V Semester Numerical Methods

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define Algebraic and transcendental equation. Give an example.
- 2. Write the condition for convergence of Newton's Raphson method.
- 3. Construct a Backward difference table, given.

х	x_0	x_1	x_2	x_3
У	y_0	y_1	y_2	y_3

- 4. Prove that $E = 1 + \Delta$.
- 5. State Newton's Backward difference interpolation formula.
- 6. Write the Lagrange's inverse interpolation formula.
- 7. Write the Simpson's $\left(\frac{3}{8}\right)^{th}$ Rule.
- 8. What are the errors in Trapezoidal rule of numerical integration.
- 9. Write Milne's predictor -Correction formula.

10. Solve
$$\frac{dy}{dx} = 1 - y$$
, $y(0) = 0$ for $x = 0.1$ by Euler's method.

- 11. Define shift operator.
- 12. Solve $\frac{dy}{dx} = e^x y$, y(0) = 0, by Picard's method.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Evaluate $\sqrt{12}$ to four decimal places by Newton's Raphson method.
- 14. Solve by Gauss Seidel iteration method : x 2y = -3, 2x + 25y = 15.
- 15. Given : $log_{10} 300 = 2.4771$, $log_{10} 304 = 2.4829$, $log_{10} 305 = 2.4843$, $log_{10} 307 = 2.4871$. Using Lagrange's Interpolation formula find $log_{10} 301$.
- 16. Find the first, second and third derivatives of the function tabulated below at the point x = 1.5.

Х	1.5	2.0	2.5	3.0	3.5	4.0	
f(x)	3.375	7.0	13.625	24.0	38.875	59.0	

17UMACE5A01 UMA/CE/5A01

- 17. Find the values of y(0.1) correct to four decimal place from $\frac{dy}{dx} = x^2 y$, y(0) = 1 with h = 0.1 by using Taylor's series method.
- 18. Evaluate $\int_0^1 \frac{dx}{1+x^2}$, using Trapezoidal rule with h = 0.2. Hence find the value of π .

19. Using Adam's method find y(0.4) given $\frac{dy}{dx} = \frac{xy}{2}$, y(0) = 1, y(0.1) = 1.01, y(0.2) = 1.022, y(0.3) = 1.023.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Find the positive root of $x^3 2x 5 = 0$ correct to three places of decimals by using False Position method
- 21. Solve by Gauss-elimination method : 3x + y z = 3; 2x 8y + z = -5; x 2y + 9z = 8.
- 22. Find f(9) using Newton's divided difference formula for the following table.

Х	5	7	11	13	17
f(x)	150	392	1452	2366	5202

- 23. Find the value of $\log 2^{\frac{1}{3}}$ from $\int_0^1 \frac{x^2}{1+x^3} dx$ using Simpson's one-third rule with h = 0.25.
- 24. Using Range-Kutta method to approximate y, when x = 0.1, 0.2, 0.3, h = 0.1 given x = 0 when y = 1 and $\frac{dy}{dx} = x + y$.

B.Sc. DEGREE EXAMINATION,NOVEMBER 2019 III Year V Semester Numerical Methods

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define Algebraic and transcendental equation. Give an example.
- 2. Write the condition for convergence of Newton's Raphson method.
- 3. Construct a Backward difference table, given.

х	x_0	x_1	x_2	x_3
У	y_0	y_1	y_2	y_3

- 4. Prove that $E = 1 + \Delta$.
- 5. State Newton's Backward difference interpolation formula.
- 6. Write the Lagrange's inverse interpolation formula.
- 7. Write the Simpson's $\left(\frac{3}{8}\right)^{th}$ Rule.
- 8. What are the errors in Trapezoidal rule of numerical integration.
- 9. Write Milne's predictor -Correction formula.

10. Solve
$$\frac{dy}{dx} = 1 - y$$
, $y(0) = 0$ for $x = 0.1$ by Euler's method.

- 11. Define shift operator.
- 12. Solve $\frac{dy}{dx} = e^x y$, y(0) = 0, by Picard's method.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Evaluate $\sqrt{12}$ to four decimal places by Newton's Raphson method.
- 14. Solve by Gauss Seidel iteration method : x 2y = -3, 2x + 25y = 15.
- 15. Given : $log_{10} 300 = 2.4771$, $log_{10} 304 = 2.4829$, $log_{10} 305 = 2.4843$, $log_{10} 307 = 2.4871$. Using Lagrange's Interpolation formula find $log_{10} 301$.
- 16. Find the first, second and third derivatives of the function tabulated below at the point x = 1.5.

Х	1.5	2.0	2.5	3.0	3.5	4.0	
f(x)	3.375	7.0	13.625	24.0	38.875	59.0	

17UMACE5A01 UMA/CE/5A01

- 17. Find the values of y(0.1) correct to four decimal place from $\frac{dy}{dx} = x^2 y$, y(0) = 1 with h = 0.1 by using Taylor's series method.
- 18. Evaluate $\int_0^1 \frac{dx}{1+x^2}$, using Trapezoidal rule with h = 0.2. Hence find the value of π .

19. Using Adam's method find y(0.4) given $\frac{dy}{dx} = \frac{xy}{2}$, y(0) = 1, y(0.1) = 1.01, y(0.2) = 1.022, y(0.3) = 1.023.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Find the positive root of $x^3 2x 5 = 0$ correct to three places of decimals by using False Position method
- 21. Solve by Gauss-elimination method : 3x + y z = 3; 2x 8y + z = -5; x 2y + 9z = 8.
- 22. Find f(9) using Newton's divided difference formula for the following table.

Х	5	7	11	13	17
f(x)	150	392	1452	2366	5202

- 23. Find the value of $\log 2^{\frac{1}{3}}$ from $\int_0^1 \frac{x^2}{1+x^3} dx$ using Simpson's one-third rule with h = 0.25.
- 24. Using Range-Kutta method to approximate y, when x = 0.1, 0.2, 0.3, h = 0.1 given x = 0 when y = 1 and $\frac{dy}{dx} = x + y$.