B.Sc. DEGREE EXAMINATION, NOVEMBER 2019 III Year VI Semester Linear Algebra

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Justify : R is a vector space over C
- 2. State the condition for a non empty subset W of V is a subspace of a vector space V
- 3. Define annihilator A(W)
- 4. For what value of k, the set $\{(2,-1,3),(3,4,-1)(k,2,1)\}$ becomes linearly independent.
- 5. Prove that W^{\perp} is a subspace of vector space V
- 6. Define basis of a vector space.
- 7. Show that $T: \mathbb{R}^2 \to \mathbb{R}^3$ by T(a,b) = (2a 3b, a + 4b) is a Linear Transformation.
- 8. When a Linear Transformation T is said to be regular.
- 9. Define Characteristic roots of a matrix.
- 10. When a Linear Transformation are said to be similar.
- 11. If $\alpha = (1, 2, 3, 4)$ and $\beta = (2, 0, -3, 1)$ then find $\|\alpha + \beta\|$
- 12. Prove that L(S) is a subspace of V.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. If V is the internal direct sum of U_1, U_2, \dots, U_n then prove that V is isomorphic to the external direct sum of U_1, U_2, \dots, U_n .
- 14. Prove that any 2 bases of finite dimensional vector space V have same number of elements.
- 15. Let V be the set of all polynomials of degree ≤ 2 over \mathbb{R} with inner product defined by $\langle f,g \rangle = \int_0^1 f(x)g(x)dx$. Starting with the basis $\{1, x, x^2\}$ obtain orthonormal basis for V.

08UMACT6013 UMA/CT/6013

- 16. If $T, S \in A(V)$ and if S is regular, then prove that T and STS^{-1} have the same minimal polynomial.
- 17. Find the characteristic root of $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
- 18. Show that the following vector form a basis for R^3 . (1,1,0),(0,1,1),(1,0,1)
- 19. Let V is finite dimensional and $\nu \neq 0$ Prove that there is an element $\overline{f} \in v$ such that $f(v) \neq 0$

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. If V is a finite-dimensional vector space, then prove that it contains a finite set v_1, v_2, \dots, v_n of linearly independent elements whose linear span is V.
- 21. If A and B are finite dimensional subspaces of a vector space V, then prove that A+B is finite dimensional and $\dim(A+B) = \dim(A) + \dim(B) \dim(A \cap B)$
- 22. Prove that every finite dimensional inner product space has an orthonormal basis.
- 23. If A is an algebra with unit element, over F, then prove that A is isomorphic to a sub algebra of A(v) for some vector space V over F.
- 24. If $T \in A(\nu)$ has all its characteristic roots in F, then prove that there is a basis of V in which the matrix of T is triangular.

B.Sc. DEGREE EXAMINATION, NOVEMBER 2019 III Year VI Semester Linear Algebra

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Justify : R is a vector space over C
- 2. State the condition for a non empty subset W of V is a subspace of a vector space V
- 3. Define annihilator A(W)
- 4. For what value of k, the set $\{(2,-1,3),(3,4,-1)(k,2,1)\}$ becomes linearly independent.
- 5. Prove that W^{\perp} is a subspace of vector space V
- 6. Define basis of a vector space.
- 7. Show that $T: \mathbb{R}^2 \to \mathbb{R}^3$ by T(a,b) = (2a 3b, a + 4b) is a Linear Transformation.
- 8. When a Linear Transformation T is said to be regular.
- 9. Define Characteristic roots of a matrix.
- 10. When a Linear Transformation are said to be similar.
- 11. If $\alpha = (1, 2, 3, 4)$ and $\beta = (2, 0, -3, 1)$ then find $\|\alpha + \beta\|$
- 12. Prove that L(S) is a subspace of V.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. If V is the internal direct sum of U_1, U_2, \dots, U_n then prove that V is isomorphic to the external direct sum of U_1, U_2, \dots, U_n .
- 14. Prove that any 2 bases of finite dimensional vector space V have same number of elements.
- 15. Let V be the set of all polynomials of degree ≤ 2 over \mathbb{R} with inner product defined by $\langle f,g \rangle = \int_0^1 f(x)g(x)dx$. Starting with the basis $\{1, x, x^2\}$ obtain orthonormal basis for V.

08UMACT6013 UMA/CT/6013

- 16. If $T, S \in A(V)$ and if S is regular, then prove that T and STS^{-1} have the same minimal polynomial.
- 17. Find the characteristic root of $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
- 18. Show that the following vector form a basis for R^3 . (1,1,0),(0,1,1),(1,0,1)
- 19. Let V is finite dimensional and $\nu \neq 0$ Prove that there is an element $\overline{f} \in v$ such that $f(v) \neq 0$

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. If V is a finite-dimensional vector space, then prove that it contains a finite set v_1, v_2, \dots, v_n of linearly independent elements whose linear span is V.
- 21. If A and B are finite dimensional subspaces of a vector space V, then prove that A+B is finite dimensional and $\dim(A+B) = \dim(A) + \dim(B) \dim(A \cap B)$
- 22. Prove that every finite dimensional inner product space has an orthonormal basis.
- 23. If A is an algebra with unit element, over F, then prove that A is isomorphic to a sub algebra of A(v) for some vector space V over F.
- 24. If $T \in A(\nu)$ has all its characteristic roots in F, then prove that there is a basis of V in which the matrix of T is triangular.