B.Sc. DEGREE EXAMINATION, NOVEMBER 2019 I Year I Semester Digital Logic Fundamentals

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. What are the available different number systems.
- 2. Explain any two logic gates with truth table.
- 3. Define Boolean algebra.
- 4. What are universal gates?
- 5. Define encoder.
- 6. Define decoder.
- 7. What is sequential logic?
- 8. What is shift register?
- 9. What are counters?
- 10. What is RAM and ROM?
- 11. Do binary addition for the numbers (convert to binary) (a) $85_{10} + 12_{10}$ (b) $10_{10} + 15_{10}$
- 12. Do binary subtraction using 2's complement (convert to binary) (a) 85_{10} 12_{10} (b) 15_{10} 10_{10}

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Write short notes on number system.
- 14. Explain De Morgan's Theorem.
- 15. Differentiate between multiplexer and demultiplexer?
- 16. Discuss about D and JK flip flops in digital.
- 17. What is memory addressing?
- 18. Explain types of RAM.

19. Solve the Equation

(a) SOP $F = \Sigma(0, 5, 7, 8, 13, 15)$

(b) POS F = $\pi(1, 3, 4, 6, 9, 11, 12, 14)$

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Explain in detail about fundamentals of digital logic.
- 21. How to construct Kmap? explain with suitable example.
- 22. Explain PAL and PLA.
- 23. Discuss in detail about JK master slave flip flop.
- 24. Explain in detail about Different types of Asynchronous counters?

B.Sc. DEGREE EXAMINATION, NOVEMBER 2019 I Year I Semester Digital Logic Fundamentals

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. What are the available different number systems.
- 2. Explain any two logic gates with truth table.
- 3. Define Boolean algebra.
- 4. What are universal gates?
- 5. Define encoder.
- 6. Define decoder.
- 7. What is sequential logic?
- 8. What is shift register?
- 9. What are counters?
- 10. What is RAM and ROM?
- 11. Do binary addition for the numbers (convert to binary) (a) $85_{10} + 12_{10}$ (b) $10_{10} + 15_{10}$
- 12. Do binary subtraction using 2's complement (convert to binary) (a) 85_{10} 12_{10} (b) 15_{10} 10_{10}

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Write short notes on number system.
- 14. Explain De Morgan's Theorem.
- 15. Differentiate between multiplexer and demultiplexer?
- 16. Discuss about D and JK flip flops in digital.
- 17. What is memory addressing?
- 18. Explain types of RAM.

19. Solve the Equation

(a) SOP $F = \Sigma(0, 5, 7, 8, 13, 15)$

(b) POS F = $\pi(1, 3, 4, 6, 9, 11, 12, 14)$

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Explain in detail about fundamentals of digital logic.
- 21. How to construct Kmap? explain with suitable example.
- 22. Explain PAL and PLA.
- 23. Discuss in detail about JK master slave flip flop.
- 24. Explain in detail about Different types of Asynchronous counters?