B.A. DEGREE EXAMINATION, APRIL 2020 III Year V Semester Mathematics for Economists

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

1. If $A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$, find A^2 .

2. Find the value of the determinant of $\begin{bmatrix} x & x \\ 1 & -x \end{bmatrix}$.

- 3. State Hawkins-Simon condition.
- 4. What is input-output Analysis.

5. Find
$$\frac{dy}{dx}$$
, if $y = (4x^3 + 2x)(3x^2 + 4)$

- 6. Find $\frac{dy}{dx}$ if $y = (3 + 2x^2)^3$.
- 7. State any 2 applications of maxima & minima in Economics.
- 8. Define marginal cost curve.
- 9. State any 2 applications of partial derivative in Economics.
- 10. Find the partial derivative of $z = 4x^2 + y^2 + 4xy$.
- 11. If $A = \begin{bmatrix} 2 & 0 \\ -5 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} -3 & 6 \\ 4 & 1 \end{bmatrix}$ find A+B.
- 12. Define cost and revenue function.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

13. Prove that
$$\begin{vmatrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \end{vmatrix} = 2(a+b+c)^3$$

14. Given A = $\begin{bmatrix} 0.4 & 0.1 \\ 0.7 & 0.6 \end{bmatrix}$ and the final demand is 50 and 100, Find the gross output.

15. If xy=a+bx then show that
$$x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 0$$

UECCT5012

- 16. Discuss about Total, Average and Marginal cost curves and Revenue curves.
- 17. Discuss the application of partial derivative in Economics.
- 18. Let $A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix}$ verify $(A + B)^T = A^T + B^T$ where A^T is transpose of A, B^T is the transpose of B.
- 19. Find the maximum and minimum value of the function $y = x^3 3x + 1$.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Using Cramer's rule, solve the set of equations x - 2y + 3z = 1 3x - y + 4z = 32y + y - 2z = -1
- 21. Illustrate the concept of Input-Output Analysis with suitable example. Also, mention its application and limitations.
- 22. a) $y = \sqrt{\frac{1-x}{1+x}}$, show that $(1-x^2) \frac{dy}{dx} + y = 0$ b) If $f(x) = x^3 5x^2 + 7$ then find f'(x), f'(1) and f'(2). For what value of x does f'(x) vanish?
- 23. The total cost C of the output x is given by $C = \frac{2}{3}x + \frac{35}{2}$. Find
 - 1. Cost when output is 4 units
 - 2. Average cost of output of 10 units
- 3. Marginal cost when output is 3 units.
- 24. Examine the function, $z = 16 (x+2)^2 (y-2)^2$ for maximum and minimum value.

B.A. DEGREE EXAMINATION, APRIL 2020 III Year V Semester Mathematics for Economists

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

1. If $A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$, find A^2 .

2. Find the value of the determinant of $\begin{bmatrix} x & x \\ 1 & -x \end{bmatrix}$.

- 3. State Hawkins-Simon condition.
- 4. What is input-output Analysis.

5. Find
$$\frac{dy}{dx}$$
, if $y = (4x^3 + 2x)(3x^2 + 4)$

- 6. Find $\frac{dy}{dx}$ if $y = (3 + 2x^2)^3$.
- 7. State any 2 applications of maxima & minima in Economics.
- 8. Define marginal cost curve.
- 9. State any 2 applications of partial derivative in Economics.
- 10. Find the partial derivative of $z = 4x^2 + y^2 + 4xy$.
- 11. If $A = \begin{bmatrix} 2 & 0 \\ -5 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} -3 & 6 \\ 4 & 1 \end{bmatrix}$ find A+B.
- 12. Define cost and revenue function.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

13. Prove that
$$\begin{vmatrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \end{vmatrix} = 2(a+b+c)^3$$

14. Given A = $\begin{bmatrix} 0.4 & 0.1 \\ 0.7 & 0.6 \end{bmatrix}$ and the final demand is 50 and 100, Find the gross output.

15. If xy=a+bx then show that
$$x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 0$$

UECCT5012

- 16. Discuss about Total, Average and Marginal cost curves and Revenue curves.
- 17. Discuss the application of partial derivative in Economics.
- 18. Let $A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix}$ verify $(A + B)^T = A^T + B^T$ where A^T is transpose of A, B^T is the transpose of B.
- 19. Find the maximum and minimum value of the function $y = x^3 3x + 1$.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Using Cramer's rule, solve the set of equations x - 2y + 3z = 1 3x - y + 4z = 32y + y - 2z = -1
- 21. Illustrate the concept of Input-Output Analysis with suitable example. Also, mention its application and limitations.
- 22. a) $y = \sqrt{\frac{1-x}{1+x}}$, show that $(1-x^2) \frac{dy}{dx} + y = 0$ b) If $f(x) = x^3 5x^2 + 7$ then find f'(x), f'(1) and f'(2). For what value of x does f'(x) vanish?
- 23. The total cost C of the output x is given by $C = \frac{2}{3}x + \frac{35}{2}$. Find
 - 1. Cost when output is 4 units
 - 2. Average cost of output of 10 units
- 3. Marginal cost when output is 3 units.
- 24. Examine the function, $z = 16 (x+2)^2 (y-2)^2$ for maximum and minimum value.