B.Sc. DEGREE EXAMINATION, APRIL 2020 I Year II Semester Allied Mathematics-II

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Find the value of the Fourier constant a_n when odd function f(x) is expanded in $(-\pi, \pi)$.
- 2. Find b_n in the expansion of x^2 as a Fourier series in $(-\pi, \pi)$.
- 3. Define the order of a PDE.
- 4. What is a complete Integral?
- 5. Define Laplace transform.
- 6. Evaluate Laplace transform of $[t^{3/2} + \cos t + 1]$.
- 7. Find Inverse Laplace transform of $-1\left[\frac{1}{s+a}\right]$.
- 8. State the linear and shifting properties of inverse laplace transform.
- 9. Find $\phi = xyzfind \text{ grad } \phi$ at (1,1,1).
- 10. State Green's theorem for plane.
- 11. If \overline{r} is the position vector , then prove that abla . $\overline{r}=3$
- 12. What is Laplace transform $(\cos^2 t)$?

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the Fourier series to represent the function x $-\pi$ in the interval $(-\pi, \pi)$.
- 14. Form the partial differential equation by eliminating the arbitrary constant a and b from

 $z = (x^2+a)(x^2+b).$

15. Find Laplace transform of [cosht.sin2t].

16. Evaluate Inverse Laplace transform of $\left[\frac{s}{(s+2)^2}\right]$.

- 17. Find the angle of intersection at (2,-1,2) between $x^2+y^2+z^2=9$ and $z=x^2+y^2-3$
- 18. Evaluate $\iint_{s} \xrightarrow{P}_{F} \stackrel{N}{\to} ds$ where $\overline{F} = z\overline{i} + xj + y^{2}z\overline{k}$ and S is the surface of the cylinder $x^{2}+y^{2}=1$ included in the first octant between the planes z=0 and z=2.

16UCHAT2MA2 UCH/AT/2MA2

19. Find the value of a,b,c so that the vector $\overline{F} = (x+2y+az)\overline{i} + (bx-3y-z)j + (4x+cy+2z)\overline{k}$ is irrotational

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

20. Obtain the Fourier series for f(x) = |x|, $\pi \le x \le \pi$ and deduce $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8}$

- 21. Find the general solution of $x(z^2-y^2)+y(x^2-z^2)=z(y^2-x^2)$.
- 22. Find the following:
 (i) Laplace transform of (te^{-t}sint) (ii) Laplace transform of (sin3t cost) (iii) Laplace transform of (e^{-3t} cos³3t)

23. Obtain the inverse laplace transform of $\left[\frac{1-s}{(s+1)(s^2+4s+13)}\right]$

24. Given the vector field $\overline{F} = xz\overline{i} + xyzj + z^2\overline{k}$, evaluate $\int_C \xrightarrow[F]{} \cdot \xrightarrow[dr]{}$ from the point (0,0,0) to (1,1,1) where C is the curve (i) x=t, y=t², z=t³, (ii) The straight path from (0,0,0) to (1,1,1).

B.Sc. DEGREE EXAMINATION, APRIL 2020 I Year II Semester Allied Mathematics-II

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Find the value of the Fourier constant a_n when odd function f(x) is expanded in $(-\pi, \pi)$.
- 2. Find b_n in the expansion of x^2 as a Fourier series in $(-\pi, \pi)$.
- 3. Define the order of a PDE.
- 4. What is a complete Integral?
- 5. Define Laplace transform.
- 6. Evaluate Laplace transform of $[t^{3/2} + \cos t + 1]$.
- 7. Find Inverse Laplace transform of $-1\left[\frac{1}{s+a}\right]$.
- 8. State the linear and shifting properties of inverse laplace transform.
- 9. Find $\phi = xyzfind \text{ grad } \phi$ at (1,1,1).
- 10. State Green's theorem for plane.
- 11. If \overline{r} is the position vector , then prove that abla . $\overline{r}=3$
- 12. What is Laplace transform $(\cos^2 t)$?

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the Fourier series to represent the function x $-\pi$ in the interval $(-\pi, \pi)$.
- 14. Form the partial differential equation by eliminating the arbitrary constant a and b from

 $z = (x^2+a)(x^2+b).$

15. Find Laplace transform of [cosht.sin2t].

16. Evaluate Inverse Laplace transform of $\left[\frac{s}{(s+2)^2}\right]$.

- 17. Find the angle of intersection at (2,-1,2) between $x^2+y^2+z^2=9$ and $z=x^2+y^2-3$
- 18. Evaluate $\iint_{s} \xrightarrow{P}_{F} \stackrel{N}{\to} ds$ where $\overline{F} = z\overline{i} + xj + y^{2}z\overline{k}$ and S is the surface of the cylinder $x^{2}+y^{2}=1$ included in the first octant between the planes z=0 and z=2.

16UCHAT2MA2 UCH/AT/2MA2

19. Find the value of a,b,c so that the vector $\overline{F} = (x+2y+az)\overline{i} + (bx-3y-z)j + (4x+cy+2z)\overline{k}$ is irrotational

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

20. Obtain the Fourier series for f(x) = |x|, $\pi \le x \le \pi$ and deduce $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8}$

- 21. Find the general solution of $x(z^2-y^2)+y(x^2-z^2)=z(y^2-x^2)$.
- 22. Find the following:
 (i) Laplace transform of (te^{-t}sint) (ii) Laplace transform of (sin3t cost) (iii) Laplace transform of (e^{-3t} cos³3t)

23. Obtain the inverse laplace transform of $\left[\frac{1-s}{(s+1)(s^2+4s+13)}\right]$

24. Given the vector field $\overline{F} = xz\overline{i} + xyzj + z^2\overline{k}$, evaluate $\int_C \xrightarrow[F]{} \cdot \xrightarrow[dr]{}$ from the point (0,0,0) to (1,1,1) where C is the curve (i) x=t, y=t², z=t³, (ii) The straight path from (0,0,0) to (1,1,1).