B.Sc.DEGREE EXAMINATION, APRIL 2020 I Year I Semester Differential Calculus

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. If $y = \log(ax+b)$. Find y_{n} .
- 2. Find the nth derivative of e^{ax} .
- 3. If $x = r \cos\theta$, $y = r\sin\theta$ find $\frac{\partial(x, y)}{\partial(r, \theta)}$
- 4. Find the minimum value of $x^3+5y^2-6x+10y+12$.
- 5. Write down the cartesian formula for radius of curvature.
- 6. Find the radius of curvature at the point $(\frac{a}{4}, \frac{a}{4})$ to the curve $\sqrt{X} + \sqrt{y} = a$.
- 7. Show that the radius of curvature at the point θ on the curve $x=a(\cos \theta+\theta \sin \theta)$, $y=a(\sin \theta-\theta \cos \theta)$ is $a\theta$.
- 8. Find the (p-r) equation for the curve $rsin\theta + a = 0$.
- 9. Define an asymptote of a curve.
- 10. State Leibnitz's theorem.
- 11. Find the asymptote of the curve $x^3+y^3=3axy$.
- 12. State the method of Lagrange's Multipliers.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the nth derivative of $\frac{2x+1}{(2x-1)(2x+3)}$.
- 14. Show that the maximum value of $x^2y^2z^2$ subject to the constraint $x^2+y^2+z^2=a^2$ is $\left(\frac{a^2}{3}\right)^3$
- 15. Calculate the first derivative of the curve $x^3+y^3=3axy$ at the point $x=y=\frac{3a}{2}$
- 16. Find the radius of curvature of the curve $r^2 = a^2 cos 2\theta$
- 17. Find the asymptote of the curve $y^3-2y^2x-yx^2+2x^3+x^2-6xy+5y^2-2y+2x+1=0$.
- 18. Find the nth derivative of $e^x \log x$.

19. If
$$u = \frac{1}{x}$$
, $\vartheta = \frac{x^2}{y}$, $\omega = x + y + zy^2$ find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. If $y = (sin^{-1}x)^2$ Prove that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} n^2y_n = 0$. Hence find the value of y_n at x = 0.
- 21. Find the minimum of $a^3x^2+b^3y^2+c^3z^2$ with the condition $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$.
- 22. Find the coordinates of the centre of curvature at the point (2at,at²) of the curve x^2 =4ay
- 23. Find the pedal equation of the curve $r = a(1-\cos\theta)$.
- 24. Find the asymptotes of the curve $4(x^4+y^4)-17x^2y^2 4x(4y^2-x^2) + 2(x^2-2)=0$ and show that they passes through eight points of intersection of the curve with an ellipse.

B.Sc.DEGREE EXAMINATION, APRIL 2020 I Year I Semester Differential Calculus

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. If $y = \log(ax+b)$. Find y_{n} .
- 2. Find the nth derivative of e^{ax} .
- 3. If $x = r \cos\theta$, $y = r\sin\theta$ find $\frac{\partial(x, y)}{\partial(r, \theta)}$
- 4. Find the minimum value of $x^3+5y^2-6x+10y+12$.
- 5. Write down the cartesian formula for radius of curvature.
- 6. Find the radius of curvature at the point $(\frac{a}{4}, \frac{a}{4})$ to the curve $\sqrt{X} + \sqrt{y} = a$.
- 7. Show that the radius of curvature at the point θ on the curve $x=a(\cos \theta+\theta \sin \theta)$, $y=a(\sin \theta-\theta \cos \theta)$ is $a\theta$.
- 8. Find the (p-r) equation for the curve $rsin\theta + a = 0$.
- 9. Define an asymptote of a curve.
- 10. State Leibnitz's theorem.
- 11. Find the asymptote of the curve $x^3+y^3=3axy$.
- 12. State the method of Lagrange's Multipliers.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the nth derivative of $\frac{2x+1}{(2x-1)(2x+3)}$.
- 14. Show that the maximum value of $x^2y^2z^2$ subject to the constraint $x^2+y^2+z^2=a^2$ is $\left(\frac{a^2}{3}\right)^3$
- 15. Calculate the first derivative of the curve $x^3+y^3=3axy$ at the point $x=y=\frac{3a}{2}$
- 16. Find the radius of curvature of the curve $r^2 = a^2 cos 2\theta$
- 17. Find the asymptote of the curve $y^3-2y^2x-yx^2+2x^3+x^2-6xy+5y^2-2y+2x+1=0$.
- 18. Find the nth derivative of $e^x \log x$.

19. If
$$u = \frac{1}{x}$$
, $\vartheta = \frac{x^2}{y}$, $\omega = x + y + zy^2$ find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. If $y = (sin^{-1}x)^2$ Prove that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} n^2y_n = 0$. Hence find the value of y_n at x = 0.
- 21. Find the minimum of $a^3x^2+b^3y^2+c^3z^2$ with the condition $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$.
- 22. Find the coordinates of the centre of curvature at the point (2at,at²) of the curve x^2 =4ay
- 23. Find the pedal equation of the curve $r = a(1-\cos\theta)$.
- 24. Find the asymptotes of the curve $4(x^4+y^4)-17x^2y^2 4x(4y^2-x^2) + 2(x^2-2)=0$ and show that they passes through eight points of intersection of the curve with an ellipse.