Bsc. DEGREE EXAMINATION, APRIL 2020 I Year II Semester Integral Calculus and Fourier Series

Time: 3 Hours Max.marks:75

Section A
$$(10 \times 2 = 20)$$
 Marks

Answer any **TEN** questions

- 1. Evaluate $\int x^3 e^x dx$.
- 2. Evaluate $\int cos^n x \, dx$.
- 3. Evaluate $\int_0^1 \int_0^2 (x^2 + y^2) dy dx$.
- 4. Evaluate $\int \int xydxdy$ over the region in the positive quadrant for which x+y=1.
- 5. Prove that $\Gamma(1)=1$
- 6. Evaluate $\int_0^1 (x log x)^4 dx$.
- 7. Find the Fourier coefficient a_0 for the function $f(x) = \frac{(\pi x)}{2}$ for all $0 < x < 2\pi$.
- 8. Define Fourier series of a function f(x) in the interval 0 to 2 π .
- 9. Define Fourier cosine series of a function f(x) in the interval 0 to π .
- 10. State Dirichlet's condition.
- 11. State Bernoulli's formula for integration.
- 12. Evaluate $\int_0^1 x^7 (1-x)^3 dx$.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Evaluate $\int (log x)^3 x^4 dx$
- 14. Evaluate $\int cos3x \ e^{2x} \ dx$.
- 15. Find by double integration the area between the parabola $y = 4x x^2$ and the line y = x.
- 16. Prove that $\Gamma^1_2=\sqrt{\pi}$ using gamma functions .
- 17. Find a fourier series for $f(x) = \begin{cases} 1, & -\pi \le x \le 0 \\ 2, & 0 \le x \le \pi \end{cases}$
- 18. Prove that β $(m,n) = \beta$ $(m,n+1) + \beta(m+1,n)$
- 19. Evaluate $\int_0^a \int_0^x \int_0^{x+y} e^{x+y+z} dxdydz$.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. If $I_n = \int_0^1 x^p (1-x)^n \ dx$, where p, q>0 and n is a positive integer. Prove that $(P+qn+1)I_n = nqII_{n-1}$ and hence evaluate I_4 .
- 21. Evaluate by changing the order of integration of $\int_{1}^{2} \int_{0}^{4-x^{2}} (x+y) \, dy dx$
- 22. Obtain the relation between Beta and Gamma function.
- 23. Obtain a Fourier series expansion for e^x in the interval $-\pi < x < \pi$
- 24. Obtain the half range cosine series for f(x)=x in the interval $0 < x < \pi$ and Deduce that the sum of the series $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots \infty$?