B.Sc. DEGREE EXAMINATION, APRIL 2020 II Year IV Semester Allied Mathematics-II

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Find a_0 and a_n of the Fourier series for the function f(x) = x in the interval $[-\pi, \pi]$.
- 2. Write the Bernoulli's formula.
- 3. Solve : pq = n.
- 4. Solve : $\sqrt{p} + \sqrt{q} = x$.
- 5. Evaluate Laplace transform of $[(1 + t)^2]$.
- 6. Find the Laplace transforms of sin(2t + 3).
- 7. Find Inverse Laplace transform of $\left[\frac{s+3}{s^2-9}\right]$.
- 8. Find the inverse Laplace transform of $\frac{1}{(s+a)^2}$.
- 9. If $\phi = x^2y 2y^2z^3$ find $\nabla \phi$ at the point (1, -1, 1)
- 10. Prove that grad $(\phi + \psi) =$ grad $(\phi) +$ grad (ψ) .
- 11. Define Solenoidal vector.
- 12. Form the PDE by eliminating arbitrary constants *a* and *b* from $z = ax + by + a^2 + b^2$.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the Fourier series for the function $f(x) = x^2$ in $-\pi \le x \le \pi$.
- 14. Eliminate the arbitrary function f from f $(xy + z^2, x + y + z) = 0$.
- 15. Evaluate Laplace transform of $[te^{-t} sint]$
- 16. Show that Inverse Laplace transform of $\left[\log\left(\frac{s+1}{s-1}\right)\right] = \frac{e^t e^{-t}}{t}$
- 17. Find the directional derivative of $\phi = 4xz^2 + x^2yz$ at the point (2, -1, 2) in the direction of 2 \vec{i} + 3 \vec{j} + 4 \vec{k} .
- 18. Show that $\vec{F} = (4xy z^3)\vec{i} + 2x^2\vec{j} 3xz^2\vec{k}$ is irrotational.
- 19. Solve : $p^2 + q^2 = x + y$.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Find the Fourier series for the function $f(x) = x \sin x$ in $-\pi \le x \le \pi$
- 21. Solve : (mz ny) p + (nx lz) q = ly mx.
- 22. Find a) Laplace transform of $\left[\frac{e^{at} \cos bt}{t}\right]$, b) Laplace transform of $\left[\frac{e^{at} e^{bt}}{t}\right]$. 23. Evaluate Inverse Laplace transform of $\left[\frac{5s+3}{(s-1)(s^2+2s+5)}\right]$.
- 24. Verify the Green's theorem for $\int_c (3x^2 8y^2)dx + (4y 6xy)dy$ where c is the boundary of the region R enclosed by the straight line y = 0, x + y = 1, x = 0.

B.Sc. DEGREE EXAMINATION, APRIL 2020 II Year IV Semester Allied Mathematics-II

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Find a_0 and a_n of the Fourier series for the function f(x) = x in the interval $[-\pi, \pi]$.
- 2. Write the Bernoulli's formula.
- 3. Solve : pq = n.
- 4. Solve : $\sqrt{p} + \sqrt{q} = x$.
- 5. Evaluate Laplace transform of $[(1 + t)^2]$.
- 6. Find the Laplace transforms of sin(2t + 3).
- 7. Find Inverse Laplace transform of $\left[\frac{s+3}{s^2-9}\right]$.
- 8. Find the inverse Laplace transform of $\frac{1}{(s+a)^2}$.
- 9. If $\phi = x^2y 2y^2z^3$ find $\nabla \phi$ at the point (1, -1, 1)
- 10. Prove that grad $(\phi + \psi) =$ grad $(\phi) +$ grad (ψ) .
- 11. Define Solenoidal vector.
- 12. Form the PDE by eliminating arbitrary constants *a* and *b* from $z = ax + by + a^2 + b^2$.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the Fourier series for the function $f(x) = x^2$ in $-\pi \le x \le \pi$.
- 14. Eliminate the arbitrary function f from f $(xy + z^2, x + y + z) = 0$.
- 15. Evaluate Laplace transform of $[te^{-t} sint]$
- 16. Show that Inverse Laplace transform of $\left[\log\left(\frac{s+1}{s-1}\right)\right] = \frac{e^t e^{-t}}{t}$
- 17. Find the directional derivative of $\phi = 4xz^2 + x^2yz$ at the point (2, -1, 2) in the direction of 2 \vec{i} + 3 \vec{j} + 4 \vec{k} .
- 18. Show that $\vec{F} = (4xy z^3)\vec{i} + 2x^2\vec{j} 3xz^2\vec{k}$ is irrotational.
- 19. Solve : $p^2 + q^2 = x + y$.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Find the Fourier series for the function $f(x) = x \sin x$ in $-\pi \le x \le \pi$
- 21. Solve : (mz ny) p + (nx lz) q = ly mx.
- 22. Find a) Laplace transform of $\left[\frac{e^{at} \cos bt}{t}\right]$, b) Laplace transform of $\left[\frac{e^{at} e^{bt}}{t}\right]$. 23. Evaluate Inverse Laplace transform of $\left[\frac{5s+3}{(s-1)(s^2+2s+5)}\right]$.
- 24. Verify the Green's theorem for $\int_c (3x^2 8y^2)dx + (4y 6xy)dy$ where c is the boundary of the region R enclosed by the straight line y = 0, x + y = 1, x = 0.