B.Sc.DEGREE EXAMINATION, APRIL 2020 III Year V Semester Numerical Methods

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. What is the order of convergence in Newton-Raphson method?
- 2. Define algebraic and transcendental equations.
- 3. What is Regula Falsi method.
- 4. State the conditions for convergence of Gauss-Seidal method.
- 5. Explain Gauss elimination method to solve AX=B
- 6. Evaluate $\triangle [x(x+1)(x+2)(x+3)]$, taking h = 1.
- 7. Define Divided differences.
- 8. State Lagrange's interpolation formula.
- 9. Write down Newton's backward difference formula to compute the derivative $\frac{dy}{dx}$.
- 10. State trapezoidal rule.
- 11. Write Picard's iteration formula.
- 12. Write the Runge kutta method of fourth order to solve. $\frac{dy}{dx} = f(x, y) \quad with \ y(x_0) = y_{0.}$

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the Positive root of the equation $x^3-x=1$ correct to two decimals using the bisection method.
- 14. Solve the following set of equations by Gauss elimination method $10x + y + z = 12, 2x + 10y + z = 13, \quad x + y + 5z = 7$
- 15. Estimate the missing term in the following data.

<i>x</i> :	0	1	2	3	4
<i>y</i> :	1	3	9	-	81

17UMACE5A01 UMA/CE/5A01

16. Use Newton's divided difference formula to find the value of f(8) from the following data.

<i>x</i> :	4	5	7	10	11	13
f(x):	48	100	294	900	1210	2028

- 17. Apply Lagrange's formula inversely to find the value of x when f(x) = 13.5, when f(93.0) = 11.38, f(96.2) = 12.80, f(100) = 14.70, f(104.2) = 17.07. f(108.7) = 19.91.
- 18. Find the first derivatives of $y = (x)^{1/3}$ at x = 50 from the table given below:

x :	50	51	52	53	54	55	56
<i>y</i> :	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259

19. Using Taylor's method, compute y(0.2) correct to 4 decimal places given $\frac{dy}{dx} = 1 - 2xy$ and y(0) = 0

```
Section C (3 \times 10 = 30) Marks
```

Answer any **THREE** questions

- 20. Find the positive root of 3x cosx 1 = 0 using Newton's method.
- 21. Solve by Gauss Seidal method 10x 5y 2z = 3, 4x - 10y + 3z = -3, x + 6y + 10z = -3
- 22. Find the value of y(9.5) using Lagrange's interpolation formula.

X	7	8	9	10
У	3	1	1	9

23. A river is 80 metres wide. The depth 'd' in meters at a distance x meters from one bank is given by the following table. Calculate the area of cross section of the river using Simpson's rule.

X	0	10	20	30	40	50	60	70	80
d	0	4	7	9	12	15	14	8	3

24. Use Adam's method of Predictor – corrector to find y(0.4) given $y' = \frac{xy}{2}$, y(0) = 1, y(0.1) = 1.01, y(0.2) = 1.022, y(0.3) = 1.023