B.Sc.DEGREE EXAMINATION, APRIL 2020 III Year V Semester Real Analysis

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. If B is a countable subset of the uncountable set A, then prove that A B is uncountable.
- 2. Define Cantor set.
- 3. Define the limit of the sequence.
- 4. Define Cauchy sequence.
- 5. Define metric space.
- 6. If ${\sf G}_1$ and ${\sf G}_2$ are open subsets of the metric space M, then prove that ${\sf G}_1\cap {\sf G}_2$ is open.
- 7. Define complete metric space.
- 8. Define totally bounded subset of a metric space.
- 9. State the Law of mean.
- 10. State second fundamental theorem of calculus.
- 11. Find limit superior and the limit inferior of the sequence $s_n = (-1)^n, n \in I$.
- 12. Prove that the set of all integers is countable.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. If B is an infinite subset of the countable set A, prove that B is countable.
- 14. If $\{s_n\}_{n=1}^{\infty}$ is a sequence of real numbers, and if $\lim_{n\to\infty} \sup s_n = \lim_{n\to\infty} \inf s_n = L$, when $L \in R$, prove that $\{s_n\}_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty} s_n = L$.
- 15. If $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$, prove that $\lim_{x \to a} [f(x) + g(x)] = L + M$.
- 16. If the subset A of the metric space M is totally bounded, prove that A is bounded.
- 17. State and prove Rolle's theorem.

17UMACT5A10 UMA/CT/5A10

- 18. If the sequence of real numbers $\{s_n\}_{n=1}^\infty$ is convergent, prove that $\{s_n\}_{n=1}^\infty$ is bounded.
- 19. State and prove comparison test.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Prove that the set $[0,1] = \{x/0 \le x \le 1\}$ is uncountable.
- 21. State and prove nested interval theorem.
- 22. Let $\langle M_1, \rho_1 \rangle$ and $\langle M_2, \rho_2 \rangle$ be metric spaces and let $f: M_1 \to M_2$. Prove that f is continuous on M_1 if and only if $f^{-1}(G)$ is open in M_1 whenever G is open in M_2
- 23. Let $< M, \rho >$ be a metric space, prove that the subset A of M is totally bounded if and only if every sequence of points of A contains a Cauchy subsequence.
- 24. State and prove first fundamental theorem of calculus.