B.Sc.DEGREE EXAMINATION, APRIL 2020 I Year II Semester Allied Mathematics-II

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

1. Form the partial differential equation by eliminating arbitrary constants a and b from

log(az - 1) = x + ay + b.

- 2. Find the complete solution of $\sqrt{p} + \sqrt{q} = 1$.
- 3. Find Laplace transform of $[sin^2t]$.
- 4. Find Laplace transform of $[t^3 t 1]$.
- 5. Find Inverse Laplace transform of $^{-1}[\frac{1}{s^2-25}]$.
- 6. Find Inverse Laplace transform of $\left[\frac{s-1}{(s-1)^2+2}\right]$.
- 7. Show that $curl(grad\phi) = 0$.
- 8. If $\vec{F} = x^2 \vec{i} + y^2 \vec{j}$, evaluate $\int \vec{F} \cdot d\vec{r}$ along the line y = x from (0,0) to (1,1).
- 9. Write the Euler's formula for Fourier coefficients in $(0, 2\pi)$.
- 10. Determine the Fourier constant a_0 for the function $f(x) = x^2$ of period $2\pi \ in \ 0 \le x \ \le 2\pi$.
- 11. Find Laplace transform of $[t^2e^{-3t}]$.
- 12. If $\phi = xyz$, findgroup ϕ at (1,1,1).

Section B
$$(5 \times 5 = 25)$$
 Marks

Answer any **FIVE** questions

13. Form the partial differential equation by eliminating arbitrary functions f and g from

 $z = f(ax + by) + g(\alpha x + \beta y).$

- 14. Find $L[t^2cos2t]$.
- 15. Find inverse Laplace transform of $\frac{1}{(s^2 + a^2)(s^2 + b^2)}$.
- 16. If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, then prove that $\nabla r^n = nr^{n-2}\vec{r}$.
- 17. If $f(x) = \frac{1}{2}(\pi x)$, find the Fourier coefficients a_0 and a_n .

UCH/AT/2AM2

- 18. Solve $px + qx + \sqrt{1 + p^2 + q^2}$.
- 19. Find the directional derivative of $\phi = xy + yz + zx$ in the direction of the vector $\vec{i} + 2\vec{j} + 2\vec{k}$ at (1,2,0).

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Solve (mz ny)p + (nx lz)q = ly mx.
- 21. Find (i) Laplace transform of $\left[\frac{sin3tcost}{t}\right]$ (ii) Laplace transform of $\left[te^{-t}sint\right]$.
- 22. Find inverse Laplace transform of (i) $\left[\frac{s-3}{s^2+4s+13}\right]$, (ii) $\left[\frac{1}{s(s^2-2s+5)}\right]$
- 23. Verify Green's theorem for $\int_C [(x^2 y^2)dx + 2xydy]$, where C is the boundary of the rectangle in the XOY-plane bounded by the lines x=0,x=a,y=0 and y=b.
- 24. Expand $f(x) = x(2\pi x)$ as Fourier series in $(0, 2\pi)$ and hence deduce $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + ... = \frac{\pi^2}{6}$.

B.Sc.DEGREE EXAMINATION, APRIL 2020 I Year II Semester Allied Mathematics-II

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

1. Form the partial differential equation by eliminating arbitrary constants a and b from

log(az - 1) = x + ay + b.

- 2. Find the complete solution of $\sqrt{p} + \sqrt{q} = 1$.
- 3. Find Laplace transform of $[sin^2t]$.
- 4. Find Laplace transform of $[t^3 t 1]$.
- 5. Find Inverse Laplace transform of $^{-1}[\frac{1}{s^2-25}]$.
- 6. Find Inverse Laplace transform of $\left[\frac{s-1}{(s-1)^2+2}\right]$.
- 7. Show that $curl(grad\phi) = 0$.
- 8. If $\vec{F} = x^2 \vec{i} + y^2 \vec{j}$, evaluate $\int \vec{F} \cdot d\vec{r}$ along the line y = x from (0,0) to (1,1).
- 9. Write the Euler's formula for Fourier coefficients in $(0, 2\pi)$.
- 10. Determine the Fourier constant a_0 for the function $f(x) = x^2$ of period $2\pi \ in \ 0 \le x \ \le 2\pi$.
- 11. Find Laplace transform of $[t^2e^{-3t}]$.
- 12. If $\phi = xyz$, findgroup ϕ at (1,1,1).

Section B
$$(5 \times 5 = 25)$$
 Marks

Answer any **FIVE** questions

13. Form the partial differential equation by eliminating arbitrary functions f and g from

 $z = f(ax + by) + g(\alpha x + \beta y).$

- 14. Find $L[t^2cos2t]$.
- 15. Find inverse Laplace transform of $\frac{1}{(s^2 + a^2)(s^2 + b^2)}$.
- 16. If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, then prove that $\nabla r^n = nr^{n-2}\vec{r}$.
- 17. If $f(x) = \frac{1}{2}(\pi x)$, find the Fourier coefficients a_0 and a_n .

UCH/AT/2AM2

- 18. Solve $px + qx + \sqrt{1 + p^2 + q^2}$.
- 19. Find the directional derivative of $\phi = xy + yz + zx$ in the direction of the vector $\vec{i} + 2\vec{j} + 2\vec{k}$ at (1,2,0).

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Solve (mz ny)p + (nx lz)q = ly mx.
- 21. Find (i) Laplace transform of $\left[\frac{sin3tcost}{t}\right]$ (ii) Laplace transform of $\left[te^{-t}sint\right]$.
- 22. Find inverse Laplace transform of (i) $\left[\frac{s-3}{s^2+4s+13}\right]$, (ii) $\left[\frac{1}{s(s^2-2s+5)}\right]$
- 23. Verify Green's theorem for $\int_C [(x^2 y^2)dx + 2xydy]$, where C is the boundary of the rectangle in the XOY-plane bounded by the lines x=0,x=a,y=0 and y=b.
- 24. Expand $f(x) = x(2\pi x)$ as Fourier series in $(0, 2\pi)$ and hence deduce $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + ... = \frac{\pi^2}{6}$.