B.Sc.DEGREE EXAMINATION, APRIL 2020 III Year VI Semester Linear Algebra

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. If V is a vector space over F then prove that
 - (i) $\alpha 0=0$ for $\alpha \in F$.
 - (ii) 0v=0 for $v \in V$
- 2. Define Quotient space.
- 3. If $dim_F V = m$ then, prove that $dim_F Hom(V, F) = m$.
- 4. Define annihilator.
- 5. Define inner product space of a vector space.
- 6. Define orthonormal set in vector space.
- 7. Define an algebra over a field.
- 8. Define an characteristic root.
- 9. Define an invariant under transformation.
- 10. When a linear transformation is said to be similar?
- 11. If $\{v_i\}$ is an orthonormal set, then prove that the vectors in $\{v_i\}$ are linearly independent.
- 12. Define dual space.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. If v_1, \ldots, v_n are in V then either they are linearly independent or some v_k is a linear combination of the preceding ones, v_1, \ldots, v_{k-1} .
- 14. If v_1, \ldots, v_n is a basis of VoverF and if w_1, \ldots, w_m in V are linearly independent over F, then prove that $m \leq n$.
- 15. State and prove Schwarz inquality.
- 16. If $\lambda \in F$ is a characteristic root of $\in A(V)$, then prove that for any polynomial $q(x) \in F[x], q(\lambda)$ is a characteristic root of q(T).

- 17. If V is n-dimensional over F and if $T \in A(V)$ has the matrix $m_1(T)$ in the basis $v_1, ..., v_n$ and the matrix $m_2(T)$ in the basis $w_1, ..., w_n$ of V over F, then prove that there is an element $C \in F_n$ such that $m_2(T) = C m_1(T) C^{-1}$.
- 18. If V is n-dimensional over F and if $T \in A(V)$ has all its characteristic roots in F, then prove that T satisfies a polynomial of degree n over F.
- 19. If V and W are of dimensions m and n, respectively, over F, then prove that Hom(V,W) is of dimension mn over F.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

20. (a) Prove that L(S) is a subspace of V.

(b) If V is the internal direct sum of U_1, \ldots, U_n then prove that V is isomorphic to the external direct sum of U_1, \ldots, U_n .

- 21. If V is finite-dimensional and if W is a subspace of V, then prove that W is finite-dimensional, $\dim W = \dim V$ and $\dim V/W = \dim V \dim W$.
- 22. Let V be a finite dimensional inner product space; then prove that V has an orthonormal set as a basis.
- 23. If V is finite dimensional over F then prove that for $S, T \in A(V)$ a. $\gamma(ST) \leq \gamma(T)$; b. $\gamma(TS)) \leq \gamma(T)$ $(and \ so, \gamma(ST) \leq min \ \gamma(T), \gamma(S))$ c. $\gamma(ST) = \gamma(TS) = \gamma(T) \ for \ S \ regular \ in \ A(V).$
- 24. If $T \in A(V)$ has all its characteristic roots in F, then prove that there is basis of V in which the matrix of T is triangular.