B.Sc.DEGREE EXAMINATION, APRIL 2020 III Year VI Semester Complex Analysis

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Sketch and state whether |2z+3| > 4 is domain or not.
- 2. Show that the function $f(z) = \overline{z}$ is nowhere differentiable.
- 3. Evaluate $\int_{\mathbf{C}} \frac{\mathbf{z}+2}{\mathbf{z}} dz$, where C is the semi circle $\mathbf{z}=2\mathbf{e}^{\mathbf{i}\theta}$, $(\mathbf{0} \le \theta \le 2\pi)$.
- 4. State Cauchy-Goursat theorem.
- 5. Evaluate $\int_{C} \frac{z}{2z+1} dz$, where C denote the boundary of the square whose sides lie along the line $x=\pm 2$ and $y=\pm 2$ described in the positive sense.
- 6. State Maclaurin's series.
- 7. Using theorem involving a single residue evaluate $\int_{\mathbf{C}} \frac{1}{\mathbf{z}} dz$, where C is the circle $|\mathbf{z}|=2$ described in the positive sense.
- 8. Find the singularities of $\frac{\sin z}{z}$ and mention the type of singularity.
- 9. Show that the transformation w=iz+i maps the half plane x>0 onto the half plane v>1.
- 10. Find the fixed points of the transformation $w = \frac{z-1}{z+1}$
- 11. Define singular point of a function.
- 12. Define essential singularity.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the Cauchy-Riemann equations in polar form.
- 14. If $\mathbf{f}(\mathbf{z}) = \pi \mathbf{e} x p(\pi \overline{\mathbf{z}})$ and C is the boundary of the square with vertices at the points $\mathbf{0}$, $\mathbf{1}$, $\mathbf{1} + \mathbf{i}$ and \mathbf{i} , the orientation of C being in the counter clock wise direction.
- 15. State and prove fundamental theorem of algebra.

- 16. Show that any singular point of $f(z) = \left(\frac{z}{z+1}\right)^3$ is a pole. Further, determine the order m of pole and find the corresponding residue.
- 17. Find the transformation that maps the points $\mathbf{2}$, \mathbf{i} , $-\mathbf{2}$ in the z plane maps into the points $\mathbf{1}$, \mathbf{i} , $-\mathbf{1}$ in w-plane.
- 18. If $\mathbf{f}(\mathbf{z}) = \mathbf{u}(\mathbf{x}, \mathbf{y}) + \mathbf{i}(\mathbf{x}, \mathbf{y})$ is an analytic function and $\mathbf{u}(\mathbf{x}, \mathbf{y}) = \frac{\sin 2\mathbf{x}}{\cosh 2\mathbf{y} \cos 2\mathbf{x}}$ find $\mathbf{f}(\mathbf{z})$.
- 19. State and prove Cauchy Residue theorem.

Section C
$$(3 \times 10 = 30)$$
 Marks

Answer any **THREE** questions

- 20. State and prove the sufficient condition for a function $f(\mathbf{z})$ to have derivative at a point \mathbf{z}_0 .
- 21. State and prove Cauchy integral formula.
- 22. State and prove Laurent's theorem.
- 23. Prove that and isolated singular point z_0 of a function f is a pole of order m if and only if f(z) can be written in the form $f(z) = \frac{\emptyset(z)}{(z-z_0)^m}$ where $\emptyset(z)$ is analytical and non zero at z_0 . Also, prove $\operatorname{Res}_{z=z_0} f(z) = \begin{cases} \emptyset(z_0) & \text{if } m=1\\ \frac{\emptyset(m-1)(z_0)}{(m-1)!} & \text{if } m \geq 2 \end{cases}$
- 24. Discuss the transformation $\mathbf{w} = \mathbf{s}inz$.

B.Sc.DEGREE EXAMINATION, APRIL 2020 III Year VI Semester Complex Analysis

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Sketch and state whether |2z+3| > 4 is domain or not.
- 2. Show that the function $f(z) = \overline{z}$ is nowhere differentiable.
- 3. Evaluate $\int_{\mathbf{C}} \frac{\mathbf{z}+2}{\mathbf{z}} dz$, where C is the semi circle $\mathbf{z}=2\mathbf{e}^{\mathbf{i}\theta}$, $(\mathbf{0} \le \theta \le 2\pi)$.
- 4. State Cauchy-Goursat theorem.
- 5. Evaluate $\int_{C} \frac{z}{2z+1} dz$, where C denote the boundary of the square whose sides lie along the line $x=\pm 2$ and $y=\pm 2$ described in the positive sense.
- 6. State Maclaurin's series.
- 7. Using theorem involving a single residue evaluate $\int_{\mathbf{C}} \frac{1}{\mathbf{z}} dz$, where C is the circle $|\mathbf{z}|=2$ described in the positive sense.
- 8. Find the singularities of $\frac{\sin z}{z}$ and mention the type of singularity.
- 9. Show that the transformation w=iz+i maps the half plane x>0 onto the half plane v>1.
- 10. Find the fixed points of the transformation $w = \frac{z-1}{z+1}$
- 11. Define singular point of a function.
- 12. Define essential singularity.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the Cauchy-Riemann equations in polar form.
- 14. If $\mathbf{f}(\mathbf{z}) = \pi \mathbf{e} x p(\pi \overline{\mathbf{z}})$ and C is the boundary of the square with vertices at the points $\mathbf{0}$, $\mathbf{1}$, $\mathbf{1} + \mathbf{i}$ and \mathbf{i} , the orientation of C being in the counter clock wise direction.
- 15. State and prove fundamental theorem of algebra.

- 16. Show that any singular point of $f(z) = \left(\frac{z}{z+1}\right)^3$ is a pole. Further, determine the order m of pole and find the corresponding residue.
- 17. Find the transformation that maps the points $\mathbf{2}$, \mathbf{i} , $-\mathbf{2}$ in the z plane maps into the points $\mathbf{1}$, \mathbf{i} , $-\mathbf{1}$ in w-plane.
- 18. If $\mathbf{f}(\mathbf{z}) = \mathbf{u}(\mathbf{x}, \mathbf{y}) + \mathbf{i}(\mathbf{x}, \mathbf{y})$ is an analytic function and $\mathbf{u}(\mathbf{x}, \mathbf{y}) = \frac{\sin 2\mathbf{x}}{\cosh 2\mathbf{y} \cos 2\mathbf{x}}$ find $\mathbf{f}(\mathbf{z})$.
- 19. State and prove Cauchy Residue theorem.

Section C
$$(3 \times 10 = 30)$$
 Marks

Answer any **THREE** questions

- 20. State and prove the sufficient condition for a function $f(\mathbf{z})$ to have derivative at a point \mathbf{z}_0 .
- 21. State and prove Cauchy integral formula.
- 22. State and prove Laurent's theorem.
- 23. Prove that and isolated singular point z_0 of a function f is a pole of order m if and only if f(z) can be written in the form $f(z) = \frac{\emptyset(z)}{(z-z_0)^m}$ where $\emptyset(z)$ is analytical and non zero at z_0 . Also, prove $\operatorname{Res}_{z=z_0} f(z) = \begin{cases} \emptyset(z_0) & \text{if } m=1\\ \frac{\emptyset(m-1)(z_0)}{(m-1)!} & \text{if } m \geq 2 \end{cases}$
- 24. Discuss the transformation $\mathbf{w} = \mathbf{s}inz$.