M.Sc. DEGREE EXAMINATION, APRIL 2020 II Year IV Semester Functional Analysis

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define normed linear space.
- 2. State Holder's inequality.
- 3. Define isometric isomorphism of the normed linear space N into N'.
- 4. Define Hilbert spaces.
- 5. Define Orthonormal sets.
- 6. Prove that $||T^*|| = ||T||$.
- 7. Define normal operator.
- 8. Define Banach algebra.
- 9. Define Topological divisors of zero.
- 10. Define Spectrum of an element x in Banach algebra A.
- 11. Define Compact Hausdorff space in the weak* topology.
- 12. Define Banach *-algebra.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. If N is a normal linear space and x_0 is a non zero vector in N, then prove that these exist a functional $f_0 \in N^*$ such that to $(x_0) = ||x_0|| and ||f_0|| = 1$ Hahn-Banach Theorm.
- 14. State and prove Minkowski's inequality.
- 15. Prove that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.
- 16. If M is a closed linear subspace of a Hilbert space H, then prove that $H = M \oplus M^{\perp}$.
- 17. If N is a normal operator on H, then prove that $||N^2|| = ||N||^2$.
- 18. Prove that $\sigma(x)$ is non-empty.
- 19. If x is a normal element in a B*-algebra, then prove that $||x^2|| = ||x||^2$.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Let N and N' be normed linear spaces and T a linear transformation of N into N' then prove that the following conditions are all equivalent to one another:
 - (i)T is continuous;

(ii)T is continuous at the origin, in the sense that $x_n \to 0 \Rightarrow T(x_n) \to 0$;

(iii)There exists a real number $K \geq 0$ with the property $\|T(x)\| \leq K \|x\|$ for every $x \in N$

(iv)If $S = \{x : ||x|| \le 1\}$ is the closed unit sphere in N then its image T(S) is a bounded set in N'.

- 21. State and prove the Open Mapping Theorem.
- 22. Let H be a Hilbert space and let f be an arbitrary functional in H*, then prove that there exists a unique vector y in H such that $f(x) = \langle x, y \rangle$, for every x in H.
- 23. Prove that the mapping $x \to x^{-1}$ of G into G is continuous and is therefore a homeomorphism of G onto itself.
- 24. If f_1 and f_2 are multiplicative functionals on A with the same null space M then prove that $f_1 = f_2$.

M.Sc. DEGREE EXAMINATION, APRIL 2020 II Year IV Semester Functional Analysis

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define normed linear space.
- 2. State Holder's inequality.
- 3. Define isometric isomorphism of the normed linear space N into N'.
- 4. Define Hilbert spaces.
- 5. Define Orthonormal sets.
- 6. Prove that $||T^*|| = ||T||$.
- 7. Define normal operator.
- 8. Define Banach algebra.
- 9. Define Topological divisors of zero.
- 10. Define Spectrum of an element x in Banach algebra A.
- 11. Define Compact Hausdorff space in the weak* topology.
- 12. Define Banach *-algebra.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. If N is a normal linear space and x_0 is a non zero vector in N, then prove that these exist a functional $f_0 \in N^*$ such that to $(x_0) = ||x_0|| and ||f_0|| = 1$ Hahn-Banach Theorm.
- 14. State and prove Minkowski's inequality.
- 15. Prove that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.
- 16. If M is a closed linear subspace of a Hilbert space H, then prove that $H = M \oplus M^{\perp}$.
- 17. If N is a normal operator on H, then prove that $||N^2|| = ||N||^2$.
- 18. Prove that $\sigma(x)$ is non-empty.
- 19. If x is a normal element in a B*-algebra, then prove that $||x^2|| = ||x||^2$.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Let N and N' be normed linear spaces and T a linear transformation of N into N' then prove that the following conditions are all equivalent to one another:
 - (i)T is continuous;

(ii)T is continuous at the origin, in the sense that $x_n \to 0 \Rightarrow T(x_n) \to 0$;

(iii)There exists a real number $K \geq 0$ with the property $\|T(x)\| \leq K \|x\|$ for every $x \in N$

(iv)If $S = \{x : ||x|| \le 1\}$ is the closed unit sphere in N then its image T(S) is a bounded set in N'.

- 21. State and prove the Open Mapping Theorem.
- 22. Let H be a Hilbert space and let f be an arbitrary functional in H*, then prove that there exists a unique vector y in H such that $f(x) = \langle x, y \rangle$, for every x in H.
- 23. Prove that the mapping $x \to x^{-1}$ of G into G is continuous and is therefore a homeomorphism of G onto itself.
- 24. If f_1 and f_2 are multiplicative functionals on A with the same null space M then prove that $f_1 = f_2$.