M.Sc. DEGREE EXAMINATION, APRIL 2020 II Year III Semester Complex Analysis

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define entire function.
- 2. Define convex
- 3. Find the singularities of $f(x) = \tan z$.
- 4. Define Meromorphic function.
- 5. Explain infinite product of the number z_n .
- 6. State Weierstrass factorization theorem.
- 7. Define Poisson kernel.
- 8. Define Dirichlet region.
- 9. State Poisson Jensen formula.
- 10. State Schottkys theorem.
- 11. State open mapping theorem.
- 12. Write down Gauss formula for Gamma function

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. State and prove Liouvilles theorem.
- 14. Let G be a region in C and f an analytic on G. Suppose there is a constant M such that $\lim_{z\to a} \sup |f(z)| \leq M$ for all a in G Prove that $|f(z)| \leq M$ for all z in G.
- 15. Let Re $Z_n \ge -1$ then prove that the series $\sum log(1+Z_n)$ converges absolutely iff the $\sum Z_n$ converges absolutely.
- 16. State and prove mean value theorem.
- 17. State and prove little Picard theorem.
- 18. State and prove Moreras theorem.
- 19. State prove Eulers theorem of sequence of prime numbers.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. State and prove maximum modulus theorem.
- 21. State and prove Schwarzs Lemma.
- 22. Let G be a region which is not the whole plane such that every non vanishing function analytic function on G has an analytic square root. Prove that there is an analytic function f on G such that f(a) = 0 and $f'(a) \ge 0$; f is one to one; $f(G) = D = \{z : |z| \le 1\}$
- 23. State and Prove Hasnacks theorem of harmonic function
- 24. If f is an entire function of finite order λ then prove that f has finite genus $\mu \leq \lambda$.

M.Sc. DEGREE EXAMINATION, APRIL 2020 II Year III Semester Complex Analysis

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define entire function.
- 2. Define convex
- 3. Find the singularities of $f(x) = \tan z$.
- 4. Define Meromorphic function.
- 5. Explain infinite product of the number z_n .
- 6. State Weierstrass factorization theorem.
- 7. Define Poisson kernel.
- 8. Define Dirichlet region.
- 9. State Poisson Jensen formula.
- 10. State Schottkys theorem.
- 11. State open mapping theorem.
- 12. Write down Gauss formula for Gamma function

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. State and prove Liouvilles theorem.
- 14. Let G be a region in C and f an analytic on G. Suppose there is a constant M such that $\lim_{z\to a} \sup |f(z)| \leq M$ for all a in G Prove that $|f(z)| \leq M$ for all z in G.
- 15. Let Re $Z_n \ge -1$ then prove that the series $\sum log(1+Z_n)$ converges absolutely iff the $\sum Z_n$ converges absolutely.
- 16. State and prove mean value theorem.
- 17. State and prove little Picard theorem.
- 18. State and prove Moreras theorem.
- 19. State prove Eulers theorem of sequence of prime numbers.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. State and prove maximum modulus theorem.
- 21. State and prove Schwarzs Lemma.
- 22. Let G be a region which is not the whole plane such that every non vanishing function analytic function on G has an analytic square root. Prove that there is an analytic function f on G such that f(a) = 0 and $f'(a) \ge 0$; f is one to one; $f(G) = D = \{z : |z| \le 1\}$
- 23. State and Prove Hasnacks theorem of harmonic function
- 24. If f is an entire function of finite order λ then prove that f has finite genus $\mu \leq \lambda$.