M.Sc. DEGREE EXAMINATION, APRIL 2020 I Year II Semester Statistical Inference - II

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define Uniformly Most Powerful test.
- 2. Define Parameter space.
- 3. When a test is said to be unbiased?
- 4. What is critical region?
- 5. What is LMP test?
- 6. Define Similar test.
- 7. Define Binomial distribution.
- 8. What is SPRT?
- 9. State the significance of testing the Sign test.
- 10. Write any two assumptions of Non parametric test.
- 11. Define Operating Characteristic function.
- 12. How do you take decision based on a Randomizes Test.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Show that the power of the test is greater than α , if size of the test is α .
- 14. State and prove a necessary sufficient condition for all similar tests have Neyman structure.
- 15. Show that the function of any test for the one parameter exponential family of distribution is continuous and differentiable.
- 16. Explain the Likelihood Ratio test and mention its properties.
- 17. Explain the Wilcoxon Signed rank for testing the randomness of the given sequence of obseravation.
- 18. What are the optimum properties of SPRT.
- 19. Discuss UMPU test with illustration.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. State and Prove the necessary and sufficient condition of the Neyman- Pearson fundamental lemma.
- 21. Derive the LMP test for testing $H_0: \theta = \theta_0: 0$ vs $H_1: \theta \neq \theta_0$, using a random sample n observations from N(μ , θ) with known μ and θ being the variance.
- 22. Derive the UMP test for teating $H_0: \theta = \theta_0: 0$ vs $H_1: \theta \neq \theta_0$ on the basis of sample from N(μ , σ) with known σ^2 .
- 23. Develop the Likelihood ratio test for testing $H_0: \sigma^2 = \sigma_0^2$ based on a random sample of size n from N(μ , σ^2) population.
- 24. Explain Kruskal wallis test indicating clearly the assumption and hypothesis that is tested.

M.Sc. DEGREE EXAMINATION, APRIL 2020 I Year II Semester Statistical Inference - II

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define Uniformly Most Powerful test.
- 2. Define Parameter space.
- 3. When a test is said to be unbiased?
- 4. What is critical region?
- 5. What is LMP test?
- 6. Define Similar test.
- 7. Define Binomial distribution.
- 8. What is SPRT?
- 9. State the significance of testing the Sign test.
- 10. Write any two assumptions of Non parametric test.
- 11. Define Operating Characteristic function.
- 12. How do you take decision based on a Randomizes Test.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Show that the power of the test is greater than α , if size of the test is α .
- 14. State and prove a necessary sufficient condition for all similar tests have Neyman structure.
- 15. Show that the function of any test for the one parameter exponential family of distribution is continuous and differentiable.
- 16. Explain the Likelihood Ratio test and mention its properties.
- 17. Explain the Wilcoxon Signed rank for testing the randomness of the given sequence of obseravation.
- 18. What are the optimum properties of SPRT.
- 19. Discuss UMPU test with illustration.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. State and Prove the necessary and sufficient condition of the Neyman- Pearson fundamental lemma.
- 21. Derive the LMP test for testing $H_0: \theta = \theta_0: 0$ vs $H_1: \theta \neq \theta_0$, using a random sample n observations from N(μ , θ) with known μ and θ being the variance.
- 22. Derive the UMP test for teating $H_0: \theta = \theta_0: 0$ vs $H_1: \theta \neq \theta_0$ on the basis of sample from N(μ , σ) with known σ^2 .
- 23. Develop the Likelihood ratio test for testing $H_0: \sigma^2 = \sigma_0^2$ based on a random sample of size n from N(μ , σ^2) population.
- 24. Explain Kruskal wallis test indicating clearly the assumption and hypothesis that is tested.