B.C.A DEGREE EXAMINATION,NOVEMBER 2019 III Year V Semester Resource Management Technique

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define Operation Research.
- 2. What are the limitations of OR?
- 3. Give the mathematical formulation of transportation problem.
- 4. Define Assignment problem.
- 5. Explain the Processing time for sequencing problem.
- 6. What is sequencing?
- 7. Explain the principle of Dominance.
- 8. What is saddle point?
- 9. Differentiate PERT and CPM.
- 10. What is Slack Time?
- 11. Discuss unbalanced assignment problem.
- 12. What is Linear Programming?

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Explain the phases of operation research.
- 14. Determine an initial basic feasible solution to the following transportation problem using NWCR.

	D_1	D_2	D_3	D_4	Supply
O ₁	6	4	1	5	14
O_2	8	9	2	7	16
O ₃	4	3	6	2	5
Required	6	10	15	4	35

15. The following five jobs must go through the two machines A and B in the order AB. Processing times are given below:

Job	1	2	3	4	5
Machine A	5	1	9	3	10
Machine B	2	6	7	8	4

Determine a sequence for the five jobs that will minimize the total elapsed time.

- 16. Explain Game theory.
 - $\begin{bmatrix} 4 & -1 & 5 \\ 0 & 5 & 3 \\ 5 & 3 & 7 \end{bmatrix}$
- 17. Explain the basic components of Network.
- 18. Solve the following LPP using graphical method. Maximise $z = 30x_1 + 20x_2$ subject to $2x_1 + x_2 \le 800$
 - $x_1 2x_2 \le 1000$
- 19. Explain Vogues approximation method of solving transportation problem.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Using Simplex method solve the LPP. Max Z = $x_1 + x_2 + 3x_3$ Subject to, $3x_1 + 2x_2 + x_3 \le 3$ $2x_1 + x_2 + 2x_3 \le 2$ $x_1, x_2, x_3 \ge 0$
- 21. Find the initial solution to the following Transportation problem using Vogel's Ap-proximation method. Destination

Factory		D ₁	D_2	D_3	D_4	Supply
	F_1	3	3	4	1	100
	F_2	4	2	4	2	125
	F_3	1	5	3	2	75
	Demand	120	80	75	25	300

22. What is traveling salesman problem? solve

α	4	7	3	4
4	α	6	3	4
7	6	α	7	5
3	3	7	α	7
4	4	5	7	α

23. solve a game

$$\begin{bmatrix} 3 & -1 & 1 \\ -2 & 3 & 2 \\ 2 & -2 & -1 \end{bmatrix}$$

24. A small maintenance project consists of the following jobs, whose precedence rela-tionships are given below.

13UCACE5A01 UCA/CE/5A01

Job	1-2	1-3	2-3	2-5	3-4	3-6	4-5	4-6	5-6	6-7
Duration	15	15	3	5	8	12	1	14	3	14

a) Draw an arrow diagram representing the project.

b) Find the total float for each activity.

c) Find the critical path.