M.PHIL. (STATISTICS) DEGREE EXAMINATIONS, EVEN SEMESTER 2021 I YEAR I SEMESTER Advanced Statistical Inference Maximum Marks : 75 SECTION – A (5 X 15 = 75 marks) (Answer any FIVE questions)

1. (a) Stat and prove Neyman Fisher Facroisation theorem.

(b) Let $X_1, X_2, ..., X_n$ be a random sample of size n from U[0, θ],

- $\theta > 0$. Find the Sufficient Statistic for θ .
- 2. (a) State and establish Rao-Blackwell theorem(b) Explain completeness and boundedly completeness with an

illustration. (7)

3. (a) State the generalized Neyman - Pearson lemma.

(b) Let $X_1, X_2, ..., X_n$ be a random sample from $N[\mu, \sigma^2], \theta \in \mathbb{R}$. Derive UMP level α test for testing the hypothesis $H_0 : \mu \leq \mu_0$ against $H_1 : \mu > \mu_0$ (8)

4. (a) Define multi Parameter exponential family. Also mention its objectives and properties.

(b) Let $X_1, X_2, ..., X_m$ be a random sample from P(λ) and Y_1 , $Y_2, ..., Y_n$ be a random sample from P(μ). Derive UMPU level α test for testing the hypothesis H : $\lambda \le \mu$ Vs K: $\lambda > \mu$.

5. (a) What is linear rank statistic? Establish its variance.(b) Explain Kruskal - Wallis test in more than two sample problem.

13MPST2

6. (a) State and Prove a necessary and sufficient condition for an estimator to be UMVUE using uncorrelatedness approach.

(b) Explain Friedman's two ways analysis of variance by ranks test in detail.

- 7. (a) Let $X_1, X_2, ..., X_n$ be a random sample of size n from N[μ , σ^2], $\mu \in \mathbb{R}$, $\sigma^2 > 0$ Show that \overline{X} is sufficient statistic for μ when σ^2 known.
 - (b) Let X have the distribution $P \in \mathcal{P}$ and T be a sufficient statistic for \mathcal{P} . Show that a necessary and sufficient condition for all similar tests have Neyman structure is that the family \mathcal{P}^T of distributions of T is boundedly complete
- 8. (a) State and establish Lehmann-Scheffe theorem
 - (b) Let $X_1, X_2, ..., X_n$ be a random sample of size n from N[μ ,
 - σ^2]. Obtain the minimal sufficient statistic.