B.Sc. DEGREE EXAMINATION,ODD SEMESTER 2020 III Year V Semester Numerical Methods

Max.marks :25

Answer any **FIVE** questions $(5 \times 5 = 25)$ Marks

- 1. Find the Positive root of the equation $x^3-x=1$ correct to two decimals using the bisection method.
- 2. Solve the following set of equations by Gauss elimination method $10x + y + z = 12, 2x + 10y + z = 13, \quad x + y + 5z = 7$
- 3. Estimate the missing term in the following data.

<i>X</i> :	0	1	2	3	4
<i>y</i> :	1	3	9	-	81

4. Use Newton's divided difference formula to find the value of f(8) from the following data.

<i>x</i> :	4	5	7	10	11	13
f(x):	48	100	294	900	1210	2028

- 5. Apply Lagrange's formula inversely to find the value of x when f(x) = 13.5, when f(93.0) = 11.38, f(96.2) = 12.80, f(100) = 14.70, f(104.2) = 17.07. f(108.7) = 19.91.
- 6. Find the first derivatives of $y = (x)^{1/3}$ at x = 50 from the table given below:

x :	50	51	52	53	54	55	56
y :	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259

7. Using Taylor's method, compute y(0.2) correct to 4 decimal places given $\frac{dy}{dx} = 1 - 2xy$ and y(0) = 0