SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN(AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with A+ Grade by NAAC) Chromepet,Chennai — 600 044. B.Sc. END SEMESTER EXAMINATION APRIL/NOV – 2021 SEMESTER - V

13UCSCE5A01 & UCS/CE/5A01- Resource Management Techniques

Total Duration	1 : 3 Hrs	Total Marks	: 75
MCQ	: 30 Mins	MCQ	: 15
Descriptive	: 2 Hrs.30 Mins	Descriptive	: 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

1. Solve the following LPP by graphically.

 $Max \ z = 8x_{1} + 5x_{2}$ subject to $2x_{1} + x_{2} \le 500$ $x_{1} \le 150$ $x_{2} \le 250$ $x_{1}, x_{2} \ge 0$

2. Solve the following LPP by Big M method

Maximize $z = 3x_1 + 2x_2$ subject to $2x_1 + x_2 \le 2$ $3x_1 + 4x_2 \ge 12$ $x_1, x_2 \ge 0$

3. Determine the initial basic feasible solution to the following transportation problem using row minima method.

		Т	o	Availability	
	5	2	4	3	12
From	4	8	1	6	15
	4	6	7	5	8
Demand	7	12	17	9	

4. A Salesman has to visit five cities A,B,C,D and E. The distance (in hundred miles) between the five cities is as follows:

Contd...

5. Find the sequence that minimizes the total elapsed time required to complete the following tasks on two machines

Job	А	В	С	D	E	F
Machine I	1	4	6	3	5	2
Machines II	3	6	8	8	1	5

6. Solve the 2 x 4 game problem graphically

Player B
Player A
$$\begin{pmatrix} 1 & 3 & -3 & 7 \\ 2 & 5 & 4 & -6 \end{pmatrix}$$

7. A project schedule has the following characteristics

Activity	1-2	1-3	2-4	3-4	3-5	4-9	5-6	5-7	6-8	7-8	8-10	9-10
Time	6	2	2	2	7	6	5	9	2	3	6	8
(days)												

- (i). Construct a network diagram
- (ii). Compute the earliest event time and latest event time.
- (iii). Determine the critical path and total project duration.
- (iv). Compute total float and free float for each activity.
- 8. Solve the following TP by using NWCR

	Р	Q	R	S	Supply
А	6	4	1	5	14
В	8	9	2	7	16
С	4	3	6	2	5
Demand	6	10	15	4	35

Section C

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

9. Solve the following LPP by Simplex Method

 $Max \ Z = 3x_1 + 2x_2$

Subject to $x_1 + x_2 \le 4$ $x_1 - x_2 \le 2$ $x_1, x_2 \ge 0$

Contd...

10. Evaluate the minimum transportation cost for the following TP

Destination									
Origin		Р	Q	R	S	Supply			
	А	11	13	17	14	250			
	В	16	18	14	10	300			
	С	21	24	13	10	400			
	Demand	200	225	275	250				

11. Solve the 6 x 2 game problem graphically

 $\begin{pmatrix}
1 & -3 \\
3 & 5 \\
-1 & 6 \\
4 & 1 \\
2 & 2 \\
-5 & 0
\end{pmatrix}$

12. Draw the network and determine the critical path for the given data.

Jobs	1-2	1-3	2-4	3-4	3-5	4-5	4-6	5-6
Duration	6	5	10	3	4	6	2	9

Evaluate the total float, free float and independent float of each activity.

13. Following is the payoff matrix for player A Player B

Player A
$$\begin{array}{c} A_1 \\ A_2 \\ A_3 \\ A_4 \end{array} \begin{pmatrix} 2 & 4 & 3 & 8 & 4 \\ 5 & 6 & 3 & 7 & 8 \\ 6 & 7 & 9 & 8 & 7 \\ 4 & 2 & 8 & 4 & 2 \end{pmatrix}$$

Using dominance property, obtain the optimum strategies for both the players and determine the value of the game.