SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with A+ Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc. END SEMESTER EXAMINATION APRIL/NOV - 2021 SEMESTER – III 20PAMCT3007– Complex Analysis

Total Duration : 3 hrs		Total Mark : 75
MCQ	: 30 min	MCQ : 15
Descriptive	: 2 Hrs. 30 Mins.	Descriptive : 60

Section B Answer any *Six* questions $(6 \times 5 = 30)$

- 1. State and Prove Open Mapping Theorem.
- 2. Show that for a > 1, $\int_0^{\pi} \frac{d\theta}{a + \cos \theta} = \frac{\pi}{\sqrt{a^2 1}}$.
- 3. If f is analytic in a region G and a is a point in G with $|f(a)| \ge |f(z)|$ for all z in G then prove that f must be a constant function.
- 4. Let Re $z_n > -1$. Prove that the series $\sum log (1 + z_n)$ converges absolutely if the series $\sum z_n$ converges absolutely.
- 5. If *f* is a mesomorphic function on an open set G then prove that there are analytic functions g and h on G such that f = g/h
- 6. Let G be a region and φ_1 and φ_2 are subharmonic functions on G; If $\varphi(z) = \max{\{\varphi_1(z), \varphi_2(z)\}}$ for each z in G then prove that φ is a Sub harmonic function.
- 7. Let G be a region in \mathbb{C} and let S be a closed connected subset of \mathbb{C}_{∞} such that $\infty \in \mathbf{S}$ and $S \cap \boldsymbol{\delta}_{\infty} \mathbf{G} = \{\mathbf{a}\}$. If G0 is the component of $\mathbb{C}_{\infty} \mathbf{S}$ which contains G then prove that G0 is a simply connected region in the plane.
- 8. Suppose G is analytic on B(0;R), g(0) = 0, $|\mathbf{g}'(\mathbf{0})| = \mu > \mathbf{0}$ and $|\mathbf{g}(\mathbf{z})| \le \mathbf{M}$ for all z then prove that $g(B(0;R)) \supset \mathbf{B}\left(\mathbf{0}, \frac{\mathbf{R}^2 \mu^2}{6\mathbf{M}}\right)$.

Contd...

Section C Part A Answer any *Two* questions (2x 10 = 20)

- 9. Let G be an open set and let $f: G \to \mathbb{C}$ be a differentiable function then prove that f is analytic on G.
- 10. Let f: D \rightarrow D be a one-one analytic map on D onto itself and suppose f (a)=0 then prove that there is a complex number c with $|\mathbf{c}|=1$ such that $f = c \boldsymbol{\varphi}_{\alpha}$
- 11. If G is a bounded Dirichlet Region then prove that for each a in G there is a Green's function on G with singularity at a.
- 12. For Re z > 1, then show that $\zeta(z)\Gamma(z) = \int_0^\infty (e^t 1)^{-1} t^{z-1} dt$.

Part B

Compulsory Question $(1 \times 10 = 10)$

13. For each α and β , $0 < \alpha < \infty$ and , $0 \le \beta \le 1$, there is a constant $C(\alpha, \beta)$ such that if f is an analytic function on some simply connected region containing $\overline{B}(0,1)$ that omits the values 0 and 1, and such that $|f(0)| \le \alpha$ then prove that $|f(z)| \le C(\alpha, \beta)$ for $|z| \le \beta$.