SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with A+ Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc. END SEMESTER EXAMINATION APRIL/NOV - 2021 SEMESTER – IV 08PAMCT4010 – Functional Analysis

Total Duration : 3 hrs		Total Mark : 75
MCQ	: 30 min	MCQ : 15
Descriptive	: 2 Hrs. 30 Mins.	Descriptive : 60

Section A

Answer any *SIX* questions $(6 \times 5 = 30)$

- 1. State and prove Minkowski's inequality.
- 2. If N is a normed linear space and x_0 is a non zero vector in N, then there exists a functional f_0 in N^* such that $f_0(x_0) = ||x_0||$ and $||f_0|| = 1$.
- 3. A closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.
- 4. If $\{e_i\}$ is an orthonormal set in a Hilbert space H, then $\sum |(xe_i)|^2 \le ||x||^2$ for every vector x in H.
- 5. If T is an operator on H for which (Tx, x) = 0 for all x, then T = 0.
- 6. The mapping $x \to x^{-1}$ of G into G is continuous and is therefore a homeomorphism of G onto itself.
- 7. Prove that $\sigma(x)$ is non-empty
- 8. If f_1 and f_2 are multiplicative functionals on A with the same null space M, then $f_1 = f_2$.

Section B

Part A Answer any **TWO** questions $(2 \times 10 = 20)$

- 9. Let H be a Hilbert Space and let f be an arbitrary functional in H^{*}. Then there exists a unique vector y in H such that f(x) = (x, y) for every x in H.
- 10. State and prove Uniform boundedness theorem.
- 11. Prove that $r(x) = \lim ||x^n||^{1/n}$.
- 12. State and prove Gelfand-Neumark theorem.

Part B Compulsory Question $(1 \times 10 = 10)$

13. Let M be a closed linear subspace of a normed linear space N. If the norm of a coset x + M in the quotient space N/M is defined by $||x + M|| = inf\{||x + m||: m \in M\}$ then prove that N/M is a normed linear space. Further, if N is a Banach space, then prove that N/M is also a Banach space.