SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with A+ Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc. END SEMESTER EXAMINATION APRIL/NOV - 2021 SEMESTER – I 20PAMET1001 – Probability and Distributions

Total Duration : 3 hrs		Total Mark : 75
MCQ	: 30 min	MCQ : 15
Descriptive	: 2 Hrs. 30 Mins.	Descriptive : 60

Section A Answer any **SIX** questions $(6 \times 5 = 30)$

- 1. Define Negative binomial distribution. Derive mgf of Negative binomial distribution.
- 2. Define Hyper-Geometric distribution. Find the Mean and variance of this distribution.
- 3. The joint probability density function of a two-dimensional random variable (X,Y) is given by

$$f(x, y) = \begin{cases} 2; \ 0 < x < 1, \ 0 < y < x; \\ 0, \qquad elsewhere \end{cases}$$

- (i) Find the marginal density functions of X and Y.
- (ii) Find the conditional density function of Y given X=x and conditional density function of X given Y=y.
- (iii) Check for independence of X and Y.
- 4. Prove that $(n-1)\frac{s^2}{\sigma^2}$ is $\chi^2(n-1)$.
- 5. Prove that the sum of independent chi-square variates is also a χ^2 -variate.
- 6. Define
 - (a) Bivariate binomial distribution and write mean and variance of the distribution.
 - (b) Bivariate Normal distribution and write mean and variance of the distribution.
- 7. Let $\{X_n, Y_n\}$, n=1,2,...be a sequence of pairs of random variables and c be a constant. Then prove that $X_n \xrightarrow{L} X$, $Y_n \xrightarrow{P} c \Rightarrow X_n + Y_n \xrightarrow{L} X + c$.
- 8. Let $X_n \xrightarrow{P} X$ and g be a continuous function defined on R. Then prove that $g(X_n) \xrightarrow{P} g(X)$ as $n \to \infty$.

Section B Part A Answer any *TWO* questions (2 x 10 = 20)

9. Let $X \sim C(\mu_1, \theta_1)$ and $Y \sim C(\mu_2, \theta_2)$ be independent random variable. Then prove that X + Y is a $C(\mu_1 + \mu_2, \theta_1 + \theta_2)$ random variable.

Contd.....

10. Let (X,Y) be jointly distributed with density function

$$f(x,y) = \begin{cases} x + y, 0 < x < 1, 0 < y < 1, \\ 0 & otherwise \end{cases}$$
. Find Mean, Variance and Covariance.

- 11. State and prove Lindeberg-Levy central limit theorem.
- 12. Define t-distribution. Derive the probability density function of t-distribution.

Part B

Compulsory Question $(1 \times 10 = 10)$

13. Derive the Mean, Variance and Moment generating function for the chi-square distribution.